	210	210	210	210	210	210	
	Registratio	on No :					
	Registratio	511 NO .					
Total	Number of	Pages : 02					.Tech
	0.4.0	7 th Seme	ester Regular / I	Back Examinati	on 2019-20		7J001
	210		NTROL SYSTE			210	
				CH : EEE			
				arks:100 3 Hours			
				E : HRB030			
Ansv	ver Questio	on No.1 (Part-	1) which is con		IGHT from Pa	art-II and any	TWO
	210	The figure	from s in the right h	Part-III. and margin ind	licate marks.	210	
			U	U			
Q1	Only Sho	rt Answer Type	P Questions (Ans (art- I wer All-10)		(2 x 10
a)	Why a zer	o-order hold de	vice is used instea	ad of a first-order l			2 ~ 10
b)			es remain invarian by and state contro		sformation.		
c) d)			r phenomena in a		- 210	210	
e)		te observer in b		£1			
f)	indefiniten		lefine positive de	enniteness, nega	uve semi-delin	meness and	
g)			ment the stability	of the singular po	pint?		
h) i)		transform of ۱mp resonance?					
j)	Show the	difference betw	veen continuous-				
	quantized	signal.₂ls there	any difference bet	tween <u>sa</u> mpled sig	gnal and quant	ized signal?	
~~	<u> </u>		-	rt- II			(a a)
Q2 a)			swer Type Quest system described				(6 x 8)
-	3r(K + 1)	-r(K). The sy	stem is initially r	elaxed (y(k)=0,K-	<0) is excited		
b)		1 [^]) <i>U</i> (<i>K</i>). Obtain the differen	n the transfer func	tion and find out y using Z-	y(k). transformer	method:	
,	C(k+2)+30	C(k+1) €2℃(k)=U	(k). C(0)=1, C(k)=	0, where K<0.	210	210	
c)			n with T=0.1s the Show that the				
			stem is oscillate?	system is marg	inally stable a		
d)	A control made cont	•	to be Un-contro	llable. Discuss th	e conditions he	ow it can be	
e)			f the system desc	cribed by $x = -x$.	+ x^3 . Comment	t the stability	
	of the sing	ular point?					
f)			bed by ${}^{2}\ddot{x}^{0}+f(\dot{x})$. Phase Trajectory				
	in case of	Nonlinear syste	ms?	-	-		
g)			ry of a system d	escribed by \ddot{x} + :	$\ddot{x} + x = 0$, Give	en the initial	
		$c_0 = +\sqrt{2}, y_0 =$		s described by	$[\dot{x}_1] = [0 \ 1]$	$[x_1]$ Use	
h۱	101/001/001/			s uescilled by	· =	$\left[\left[x_{2} \right] \right]$. Use	
h)					L. Z. I. I.	$\frac{2}{x^2}$	
			bility. You may tak	ke a Lyapunov fur	L. Z. I. I.	$+ x_2^2 \cdot_{210}$	
h) i)	Lyapunov'	s method of sta	bility. You may tal	$\begin{aligned} & \textbf{ke a Lyapunov fur} \\ & \vec{x_1} = x_2 \\ & \vec{x_2} = -x_1^3 - x_2 \end{aligned}$	nction $V(x) = x_1^2$		
	Lyapunov' Prove tha	s method of sta t system is glo		ke a Lyapunov fur $\dot{x_1} = x_2$ $\dot{x_2} = -x_1^3 - x_2$ ally stable using	nction $V(x) = x_1^2$		

- For a system having the describing function given by $N=0.99X_m^{-1} < -35$ where X_m is the peak value of the sinusoidal function determine the amplitude and frequency of the limit j) cycle.
- k)
- Find inverse Z-transform of $X(z) = \frac{Z(z+1)}{(z-1)^3}$, $X(z) = \frac{z^2}{(z-1)^2(z-e^{-aT})}$ Determine the state feedback gain matrix K of the system $:\dot{X} = A\dot{X} + Bu$; y = Cx, where I) $A = \begin{pmatrix} 0 & 1 \\ 20 & 6 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, such that the closed-loop poles are at $-1.8 \pm j2.4$.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four) Q3 a) For the following system determine the equilibrium point & discuss the stability of each (8) equilibrium using Lyapunov's (indirect) linearization method

$\hat{x}_{1}^{210} = x_{1}(1 - x_{1}^{210}) - \frac{1}{2}x_{1}x_{2}$ $\hat{x}_{2} = x_{2}(1 - x_{2}) + \frac{1}{2}x_{1}x_{2}$

Clarify each equilibrium point (node, saddle etc.) and use the results to sketch the flow of trajectories in the (x_1, x_2) plane.

Using Laplace transforms method, obtain STM for $A = \begin{pmatrix} 0 & 1 \\ -20 & -9 \end{pmatrix}$. b)

Design the state feedback controller for the following system and derive the parameters **Q4** (16) k_1, k_2 and k_3 , which set the system poles to -8.0 and -12±4*i*

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0 & 4 & 0 \\ -3 & 0 & 2 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_2 \end{bmatrix}$$

Show that the above system is reachable. Is it also observable?

- For a unity feedback system, the discrete time transfer function $G(z) = \frac{K(Z+0.9)}{(Z-1)(Z-07)}$. Find Q5 (16)the value of K for the stability using (i) Bilinear transformation and (ii) Jury's stability test?
- **Q6** The continuous time state-space representation of a two tank system is : (16) $\frac{dx(t)}{dt} = \begin{bmatrix} -0.0197 & 0\\ 0.0178 & -0.0129 \end{bmatrix} x(t) + \begin{bmatrix} 0.0263\\ 0 \end{bmatrix} u(t)$ $y = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$
 - a) Sample the system with the sampling period T = 12. b) Verify that the pulse transfer operator for the system is :

$$I(q) = \frac{0.030q + 0.026}{q^2 - 1.65q + 0.68}$$

(8)