	210	210	210	210	210	210	21
	Regi	stration No :					
Tot	al Nu	mber of Pages : 02	210	210	210	010	B.Tech 37D001
			Max Ma Time :			PCS	0001
Aı	nswe	r Question No.1 (Par The fiqu	t-1) which is con	npulsory, any Part-III.		-	TWO 2 ⁻
			-	art- I			
Q1		Only Short Answer T					(2 x 10)
	a)	Define Algebraic codin	• •				
	b))	Define Hensel lifting.	210	210	210	210	2
	C)	What is the difference		al basis and nor	rmal basis?		
	d)	What is complete facto					
	e)	What is Primality testir	•				
	f)	What do you mean by	• •	netic?			
	g)	Define Chinese Rema			_		
	h)	What is the time comp	•				
	₫) j)	What is hensel lifting a How Elliptic Curves re		210-	niai divișijon ?	210	
			Р	art- II			
Q2		Only Focused-Short		•	/er Any Eight ou	ut of Twelve)	(6 x 8)
	a)	Find all the points at in	•	•	t	0	
	b)	The ellipse $X^2 / a^2 + Y^2$			treated as a curv	ve over C.	
	b)	Represent F9 as F3(θ) Find the roots of x ⁴ + x	+ 2 in F9	- 0. ₂₁₀	210	210	
	c)	Let p be a prime num modulo p if and only if	nber and greater th	an 11. Prove	that 11 is a qua	idratic residue	
	d)	Let a ₁ ,a ₂ , ,a _n be nor	,	d d = gcd(a₁,a2	2, ,a _n). Prove th	nat there exist	
		integers u1,u2, ,un wit					
	e)	Represent F9 as F3(θ)			•		
	f)	The polynomial $x^2 + x$					
	g)	Let $n = x^2 y^1$ where x factoring n is polynomial	al-time equivalent t	o computing φ((n).	1). Prove that	
	• •			ustify your answ	ver		
	h)	Is u >= \sqrt{n} , then n is p					
	i)	Describe the process	of root finding with o	one example.	:u	16 - 6 - 13	
	•	Describe the process of Describe pollard rho r	of root finding with o	one example.	gorithms over fir	nite fields with	
	i)	Describe the process	of root finding with on nethod of computing	one example.	gorithms over fir	nite fields with	

210	210	210	210	210	210	210	210

			Only Long Answer T	vpe Questions (Part-III Answer Anv Tw	o out of Four)			
210	Q3	210	List the various algorit			S. 210	(16) ₂₁₀		
	Q4		Determine which of the following curves is/are non-singular. a) C1 : $y^2 + 4y = x^3 - 3x - 6$ defined over Q. b) C2 : $y^2 + 4y = x^3 - 3x + 6$ defined over F7.					(16)	
210	Q5	a) b) 210					210	(8) (8) ₂₁₀	
	Q6	a) b) c) d)	Short notes on any FOUR(4 × 4)AKS test.Index calculus methodsCFRAC methodSchoof's point counting algorithm						
210		e) 210	pollard's p-1 210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	