10		210	210	210	210	210	210	210
		Real	stration No :					
		itegi	stration No .					
	Tota	al Nu	mber of Pages :	02			Þ	B.Tech IE7D011
10		210	210 7 t	BR/ Ma	ar/Back Examir DNAL FLUID DY ANCH : MECH x Marks : 100 me : 3 Hours		210	210
	_			Q.C	ODE : HRB362			
	Α	nswe	er Question No.1	(Part-1) which is	compulsory, ar rom Part-III.	ny EIGHT from P	art-II and any	<i>ι</i> τωο
10		210	² The	figures in the rig	010	indicate marks.	210	210
					Part-I			
	Q1			ver Type Questions				(2 x 10)
		a) b) c) d)	What is the need	nce. tion and round off er l for staggered grid? ids are used in FVM				
210		e) ¹⁰ f) g) h) i)	What are the imp What are the me Differentiate betw Write down the s Distinguish betw	oortant applications of thods available for g veen structured and ignificance of Taylor een conservation an	of CFD in enginee rid generation? unstructured grid. series expansion d non-conservatio	n forms of fluid flow		210
		j)	Write down cons	ervative form of cont	inuity equation an	id explain the terms	s involved.	
:10	Q2	210 a)		hort Answer [®] Type (c, parabolic and hyp				(6 x 8) ²¹⁰
		b) c) d)	Write a short note Describe Errors a Use finite volum	on Explicit scheme nd uncertainty in CF e method to divide the discritized equat	D. total length of t	the rod into five e	equal control	
		e)	Derive the continu	uity equation in differ	ential form for in o	compressible flow.		
210		f)10 g)	What are differe differential equati figures	es between finite volu nt basic rules that ion by finite volume	you need to obe method. Explair	ey to discretize ar n these clearly wit	h supportive	210
		h)		t and describe SIMF Cartesian co-ordinat	-	two-dimensional la	minar steady	
		i)	What is cell cent	ered formulation? E		se of control volun	ne and semi	
210		j)10 k)	State and explain	ation. າber and stateાts im າ the difference bet		210 I implicit methods	210 with suitable	210
		I)	examples. Decribe the QUIC	K scheme approach				
10		210	210	210	210	210	210	210

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

Part-III Only Long Answer Type Questions (Answer Any Two out of Four) Q3 In the one-dimensional constant-density situation below, the moementum equations for (16)ub and uc can be written as follows: $u_b = 5 + 2.5(p_1 - p_2)$ $u_c = 5 + 7.5(p_2 - p_3)$ $\xrightarrow{u_A}$ $\xrightarrow{u_B}$ $\xrightarrow{u_C}$ The boundary conditions are as ub=15, p3=10 (all values are given in consistent units). Write the continuity equations for the regions AB and BC and hence2derive i) the corresponding pressure correction equations. Starting with guess for p1, p2, follow the SIMPLE procedure to obtain converged values of p2, ub ,uc. The temperature variation in condenser tube is given by $\dot{m}C\frac{dT}{dr} = \frac{UA}{I}(T_0 - T)$, (16) Q4 where \dot{m} is the mass flow rate, C is the specific heat, T is the temperature of cooling water, T_0 is the constant temperature of the condensing steam, U is the overall heat transfer coefficient, A is the total heat transfer area. Define a non-dimensional temperature $\theta = \frac{T - T_{in}}{T_0 - T_{in}}$, $y = \frac{x}{L}$, Obtain θ as a function of y numerically, taking only 5 grid points using upwind scheme. Also compare with exact solution. You may ²¹⁰ take $\frac{AU}{\dot{m}C} = 2^{\circ}$.

- Q5 Consider a cylindrical fin with uniform cross-sectional area A. the base is at a temperature of $120^{\circ}C$ (T_s) and the end is insulated. The fin is exposed to an ambient temperature of $25^{\circ}C$. One-dimensional heat transfer in this situation is governed by $d/dx{kA(dT/dx)}-hP(T-T_a) = 0$
- whereh_a is the convective heat transfer coefficient is the perimeter, k the thermal conductivity of the material and T_a the ambient temperature. Calculate the temperature distribution along the fin using five equally placed control volumes. Take hp / (kA)=25m² (note: kA is constant)
 - Q6 Derive the energy equation for a viscous flow in partial differential non-conservation (16) form.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210	210 210	210 21	0 210
-------------	---------	--------	-------