	210	210	210	210			210
	Regi	stration No :					
	•	mber of Pages : 03					B.Tech
1016	210	210	210	210	210	210	E7J001
Δn	SWA	7 ‴ Sei r Question No.1 (Pa	MECHAN BRA Max Tin Q.CC	IICAL VIBRAT NCH : MECH Marks : 100 ne : 3 Hours DE : HRB043		Part-II and any	TWO 210
			fre	om Part-III.	n indicate marks	-	
				Part- I			
Q1	a)	Only Short Answer A spring mass system constant is increased	m has time perio			period if spring	(2 x 10)
	b))	Obtain the governing principle.		notion of ^{ic} a spr	ing mass ¹ system	by Rayleigh's	210
	c) d)	Explain the concept of What is critical dampi			nder hysteresis cur	ve?	
	e)	What is transmissib against frequency rat	ility ratio? Draw	response curv		missibility ratio	
	f) a)	What do you mean by What is the difference	y transient respo	nse and steady	state response?		
	g) ħ)⁰ i)	State the principal of How will you differen	orthogonality of r	node shapes.	210	210 and continuous	210
	j)	system? Write down the gene terms.	eral solution of c	one dimensiona	l wave equation a	nd explain the	
				Part- II			
Q2	a)	Only Focused-Short Represent the period				ut of Twelve) 210	(6 x 8) 210
		10 cr					
		10 (1	0.3 sec 0.2	sec 🖛			
	210	210				210	210
	b)	Find the natural frequ	ency of the syste	Fig.1 em shown in Fig	.2.		
	210	210	3 ^k		www	210	210
	C I U	210				CIU	210
				minn			

	210	210	210	210	210	210
--	-----	-----	-----	-----	-----	-----

210	210	210	210	210	210	210	210

\cap	-1	0
2		

c) A spring mass damper system is defined by the following parameter m=3 kg, k=100 N/m, C=3 N-s/m. Determine

- a. Critical damping constant
- b. Damping ratio
- c. Frequency of damped oscillation
- d. Logarithmic decrement
- No of cycles after which the initial amplitude is reduced to 20%.
- d) Define logarithmic decrement and derive its expression for damped free vibration.
- e) Explain the basic working principle of vibration absorber with neat sketch.
- f) A machine of mass 75 kg is mounted on an isolator having stiffness 1200×10³ N/m and
 - a damping factor 0.2. A reciprocating part of 2 kg has 80 mm stroke. If the crank speed is 3000 r.p.m., determine
 - a. the amplitude of machine
 - b. the phase angle
 - c. the force transmitted to the foundation.
- **g)** A vibrometer having the amplitude of vibration of the machine part as 4 mm and damping ratio 0.2, performs harmonic motion, if the difference between the maximum and minimum recorded value is 10 mm, determine the natural frequency of vibrometer,
- if the frequency of the vibration part is 12 rad/sec.

the natural frequencies of the system.

- h) Find the fundamental frequency of vibration of the system as shown in the Fig. 3 given below. Take K=1 N/m and m=4 kg.
 - 2K m K 2m X₁

Fig. 3

What is Co-ordinate coupling? Explain through diagram and derive the expression for

Discuss the method for finding the natural frequency of torsional vibration for a two

Estimate the fundamental natural frequency of a simply supported beam of length *I* carrying three identical equally spaced masses ($m_1=m_2=m_3$) by Dunkerley's Formula.

What is the main difference in nature of frequency equations of a discrete system and

Part-III

A body of mass 5kg is supported on a spring of stiffness 1960 N/m and has a dashpot

Take E and I as modulus of elasticity and moment of inertia of the beam.

Only Long Answer Type Questions (Answer Any Two out of Four)

210

210

4)⁰

j)

k)

2)0

Q3

rotor system.

a continuous system?

01

210

210

- connected to it, which produces a resistance of 0.98 N at velocity 0.5 m/s. Finda) natural frequency of the system210210210b) damping ratio
 - c) Displacement of mass, 0.5 sec after it was displaced through 20 mm and released.

10

210

210

210

(16)

210	210	210	210	210	210	210	210

Q4 A machine weighs 18 kg and is supported on spring and dashpots. The total stiffness (16) of springs is 12 N/mm and damping coefficient is 0.2 Ns/mm. The system is initially at rest and a velocity of 120 mm/s is imparted to the mass. Determinea) Natural frequency of system b) Damped frequency of system c) Damping factor d) The displacement and velocity of mass as a function of time e) The displacement and velocity after 0.5 sec. Q5 Find out the natural frequency of the following system shown in Fig.4 by Holzer's (16) method & draw the mode shapes. $K_2 = 1 \text{ N/m}$ $K_1=1 \text{ N/m}$ m₃=2 kg $m_2=1 \text{ kg}$ m₁=1 kg Fig. 4

Q6 Derive the expression of one dimensional wave equation and find out its general (16) solution.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
010	010	010	010	010	010	010	010