)		210	210	210	210	210	210	210		
		Registration N	o:							
	Total	Number of Pag	es : 02					3.Tech		
)		210		er Regular / Ba JND IMPROVE BRANCH Max Mar Time : 3 Q.CODE :	MENT TECH I: CIVIL ks: 100 Hours		210 PCI	210 210		
)	Ansv	ver Question No 210 T	210	which is comp 210 from P in the right har	art-Щ	210	art-II and any	TWO 210		
		•	ne ngares i	•	•	aloute marks.				
	Q1	Part- I Only Short Answer Type Questions (Answer All-10)								
	a)	•	• •	ovement techniq	•	sed in black co	·	(2 x 10)		
)	b) c)	why? Define swelling	potential of a	n expansive soil. n sand drains an	How is it relate	ed to plasticity ir		210		
	d) e) f)	When and why Define suitabilit	deep surface y number of a	he desirable cha compaction cont backfill. Determ	trol tests are re	sorted?	f which D ₅₀ =			
	a)	1 mm, D ₂₀ = 0.5		18 mm. ch ground improv	ement techniqu	ues are under ta	kan?			
)	g) h) i) j)	What do you me List out the maj	ean by step g or functions o	•	210	210	210	210		
	,,	villen type er e		ioi iiiiio iiy deii o	tabilization :					
	02	Only Foound	Chart Angue	Part		Any Fight out o	of Turalysa)	(6 × 0)		
	Q2 a)	Describe with n	eat sketch, th	er Type Questio e installation pro	cedure of vibro		•	(6 x 8)		
)	b) c)			o-osmosis methor influence the ef		thermal stabiliz	210 ation/ground	210		
	d) e)	Explain the me	chanism of c	nsideration of dyl ement stabilization zed soil? Discus	on. What are t		ors affecting			
)	f)	from 10 m dep surface. Deterr	th and movin mine the max mount of dec	ding stage, grout ag upwards to 8 ximum permissik crease in pressur and $K_0=0.40$.	m, 6m, and 4 ole grout pres	m depth below sure at 10 m	the ground depth. Also,	210		
	g) h)	What are the d	ifferent types	hich groutability of rollers used would you contro	for compaction	as per their ap	• •			
)	i)	What are varimprovement? I	ious dewater Discuss in brie	ring techniques ef. ²¹⁰	which are g	generally used	<i>*</i>	210		
	j) k) l)	Explain Permea	ntion grouting.	stabilize and gai		•	t system for			

210		210	210	210	210	210	210	210						
210	Part-III Only Long Answer Type Questions (Answer Any Two out of Four) Q3 Distinguish with suitable illustrations, between vibrocompaction and compaction pile for ground improvement in granular soil. Indicate some field situations where these techniques are suitable. 210 210 210 210 210													
	Q4	thickness over C_v = C_h =2.2 m^2 p surface over a	impermeable r er year. A unifor very wide area. puired to reach 50	rith spacing 2.4 r ock strata. The m vertical stress Determine the a	m c/c are installe soil has m _v = of 60 kN/m ² is mount of final c	ed in a soil layer 0.8X10-4 m²/k applied suddenly consolidation sett	of 7 m (16) N and to the	2.0						
210		` '	ains in place. Giv	ven that Tr=0.13	210	210	210	210						
	Q5	Compare the advantages and disadvantages of ascending stage and descending stage (16) grouting .What are the application of grouting?												
	Q6		different modes y step method of			nkment? Discus	ss with (16)							
210		210	210	210	210	210	210	210						
210		210	210	210	210	210	210	210						
210		210	210	210	210	210	210	210						
210		210	210	210	210	210	210	210						
210		210	210	210	210	210	210	210						