210	, 210	210	210		210						
			<u> </u>			No :	ietration	Pogi			
						Registration No :					
B.Tech EE7J004	²¹⁰ D	210	210		210	Total Number of Pages : 02					
-17004		mination 201	Back Ex	gular	nester Re	7 th Se					
		NEERING									
			ELECTF arks: 10		BR						
			: 3 Hours	Time							
v TWO 210	from Part-II and an		E : HRB1		t_1\ whic	on No 1 (Pa	or Ouget	newo	۸.		
y 1440 210	THOM Part-Manu and	ally ElGHI	Part-III.		t-1) Will	OII NO. I (Pa	ei Quesi	112WE	Ai		
	marks.	jin indicate r		_	res in th	The fig					
			art- I								
(2 x 10)			nswer Al			nort Answer			Q1		
	munication system?							a) b)			
210	Calculate the modulation index if a 10 V carrier is amplitude modulated by three different signals having amplitudes 1 V, 2V and 3V respectively. 10										
	tly describe the signal	ired to exactly	es are rec					c)			
	doubled, what would	d signal is d	y modula			10 $\cos(6\pi t)$ + nodulation in		d)			
	مرد داماندالا وبردناس	happen to the bandwidth of the signal?									
	pling? Which one	ı naturai samp	ampling ar	пат-тор	between		is prefe	e)			
0.10	2	f) What is slope overload problem in delta modulation?									
210								g) ^o h)			
	s corresponding to a							i) j)			
		the total radia						3/			
			art- II								
(6 x 8) 210	Eight out of Twelve)							210	Q2		
	ated with a sinusoidal lculate the sideband							a)			
	e total power in the					cies, the ba	frequer				
	e adaptive modulation	How does the	chnique?	ulation	delta mod	ted wave. the adaptive		b)			
	s adaptive medicination	technique?	nodulatior	in delta	problem	overcoming th	help in				
010	le modulated signal.		•	•		nd explain in l he output sig		c) d)₁			
210	in of 12 dB and noise	ge has a gain	he first st	stages.	has two	aded amplifie	A casc	e)			
	noise figure of 5 dB. the equivalent noise					te the noise					
	he correlation function	density and th				auto-correlat	What is	f)			
	ratio is to be held to a	tizina-noise ro				iodic wavefor		a)			
210	d levels and find the	r of required	he numb	termine	dB. De	m value of 4	minimu	g) 210			
2.0			noise rat	uantizir	signal to c	onding output	corresp	0			

10		h) 210 i) j) k) l) 210	An AM signal is general m(t) = sin 2000πt s(t) = 100[1+m(t)]cos2πt i) Find the average position ii) What is the modula Explain with block diag Mention the different significance of White Graphic Explain the principle arits advantages and disagring the Fourier transference of the F	+ 5cos 40 rfct is fed to a 5 ower in the carr tion index? ram the indirect sources of not aussian noise in ad operation of advantages.	000πt. The amp 50 Ω load. rier and in the side t method of FM ge bise in a commu in communication envelop detector	ebands. ²¹⁰ eneration. inication system system? used for AM dete	ed signal is 210 . What is the ection. Mention	210		
10	Q3	210	Part-III Only Long Answer Type Questions (Answer Any Two out of Four) A signal m(t), band limited to 3 KHz is sampled at a rate of 33.3334 % higher than Nyquist rate. The maximum acceptable error in the sample amplitude is 0.5% of the peak amplitude. The quantized samples are binary coded. Find the minimum bandwidth of a channel required to transmit the encoded binary signal. If 24 such signals are time division multiplexed, find the minimum transmission bandwidth required to transmit multiplexed signals.							
	Q4		Describe needs of mod	ulation and dis	cuss the elements	of a communica	ation system.	(16)		
	Q5		Derive the spectrum expression for the total			ℳ wave and al	so derive the	(16)		
10	Q6	210	Discuss the principle o Compare delta modula				block diagram.	(16) 210		
10		210	210	210	210	210	210	210		
10		210	210	210	210	210	210	210		
10		210	210	210	210	210	210	210		