(8)

- h) Discuss various steps involved in Golden Section Search method.
- i) Evaluate an initial basic feasible solution to the following transportation problem using north-west corner rule

0	210		To ²¹⁰		Available		210
	3	4	6	8	9	20	
From	2	10	1	5	8	30	
	7	11	20	40	3	15	
	2	1	9	14	16	13	
Demand	40	6	8	18	6	-	

- j) Write short notes on Hungarian method for the solution of Assignment problem.
- Solve the given nonlinear programming problem by using Lagrange Multiplier Method: Maximize $Z=4x_1-x_1^2+8x_2-x_2^2$, Subject to $x_1+x_2=2$, $x_1,x_2\geq 0$.
- I) Describe the Characteristics of the Queuing system.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

- Q3 Discuss Revised Simplex method to solve the given problem hin mize $z = -4x_1 + x_2 + 2x_3$, Subject to $2x_1 3x_2 + 2x_3 \le 12, -5x_1 + 2x_2 + 3x_3 \ge 4, 3x_1 2x_3 = -1, x_1, x_2, x_3 \ge 0$. (16) 210
- Describe the solution of the given nonlinear problem by using Fibonacci method: (16) Minimize $f(x) = x^2 + 2x$ within [-3,4], with 5% exact value.
- Q5 Discuss various steps involved in order to solve the given nonlinear optimization problem by using Kuhn-Tucker method: Minimize $f(x,y) = x^2 4x + y^2 6y$, Subject to $x + y \le 3, -2x + y \le 2, x, y \ge 0$. (16) 210
- Q6 a) Write short notes on Markovian Queuing model.
 - b) In a store with one server, 9 customers arrive on a average of 5 minutes. Service is done for 10 customers in 5 minutes,
 - Find (i) The average number of customers in the system.
 - (ii) The average Queue length.
 - (iii) The average time a customer spends in the store.

210 210 210 210 210 210 210 210

210 210 210 210 210 210 210 210

210 210 210 210 210 210