- h) Discuss various steps involved in Fibonacci method.
- i) Evaluate an initial basic feasible solution to the following transportation problem by Vogel's Approximation method,in which the cells contain transportation cost in rupees,

)	210		To 210			Available		
	7	6	4	5	9	40		
From	8	5	6	7	8	30		
	6	8	9	6	5	20 10		
	5	7	7	8	6	10		
Demand	30	30	15	20	5			

j) Solve the following assignment problem. The matrix entries are processing times in hours.

		Operator						
		1	2	3	4	5		
	1	20	22	35	22	18		
	2	4	26	24	24	7		
	3	23	14	17	19	19		
Job	4 0	17	15 2	լ 16	18	15		
	5	16	19	21	19	25		

k) Solve the given nonlinear programming problem by using Lagrange Multiplier Method: Maximize $Z = 4x_1 - 2x_1^2 + 6x_2 - 2x_2^2 - 2x_1x_2$, Subject to $x_1 + 2x_2 = 2$,

 $x_1, x_2 \ge 0.$

I) Write short notes on M/M/1 model.

Q3 Discuss Revised Simplex method to solve the given problem Minimize $z = x_1 + 2x_2 + 3x_3 - x_4$,

Subject to $x_1 + 2x_2 + 3x_3 = 15, 2x_1 + x_2 + 5x_3 = 20, x_1 + 2x_2 + x_3 + x_4 = 10$

 $x_1, x_2, x_3, x_4 \ge 0$.

Q4 Minimize $f(x) = 4x^3 + x^2 - 7x + 14$ within [0,1] using Golden Section Search method with n = 8. (16)

(16)

Q5 Discuss various steps involved in order to solve the given nonlinear optimization problem by using Kuhn-Tucker method: (16)

Maximize $f(x,y) = -x^2 + 4x + 6y - y^2$, Subject to $x + y \le 2, 2x + 3y \le 12$,

210 $x,y \ge 0$. 210 210

- Q6 a) Describe the Characteristics of the Queuing system. (5)
 - In a store with one server, 9 customers arrive on a average of 5 minutes. Service is done for 10 customers in 5 minutes,
 - Find (i) The average number of customers in the system.
 - (ii) The average Queue length.
 - (iii) The average time a customer spends in the store.
 - c) Discuss limitations of Queuing model. (5)