Registration No :								вт	
lota	210 210	mber of Pages : 02	210	210		210	²¹⁰ PI	B.T ME5	
Ar	iswe	r Question No.1 (Pa	BRA Ma: Tir Q.C0 rt-1) which is	AT TRANSFE ANCH : MEC x Marks : 10 me : 3 Hours ODE : HRB1 compulsory rom Part-III.	ER H 0 5 71 7, any EIG	HT from F		у ТМ	
				Part- I					
Q1		Only Short Answer	••	•				(2)	
	a)	Write 1-D heat condu	•	•			d h0		
	<u>b</u>)₀ c)	What happens to the conductivity of gas when it temperature increase and why?							
	d)	What is the physical s	•	iot number wit	h fin effecti	veness?			
	e)	What is a contact res its units	•				so for this give		
	f)	Define Grashof numb	• ·	• •			•		
	g) b)	Define diffused reflec What is a view factor			•				
	h) 210	view factor between t			cally assoc				
	i)	Draw the temperature	e profile of Cond	enser and Eva	aporator.				
	j)	How does dropwise of	ondensation diff	fer from film co	ondensatior	ר?			
				Part- II					
Q2	a)	Only Focused-Short The inner surface at						(6	
	a) 210	temperature ² T ₁ and T ₂ a. Develop an expre b. Develop an expre c. Develop an expre	² respectively. T ession for 1-D, s ession for radial ession for therma	he thermal co teady state te heat flow rate al resistance c	nductivity o mperature o 'Q' through of hollow sp	f solid "K" distribution the hollow here.	is constant. T _r in sphere. / sphere.		
	b)	Explain 1 st kind,2 nd kin							
	c)	Consider steady 1D generation 80 MW/m							
	210	160°C and 2120°C 1 200W/m-K Find a) side b) The maximum	respectively. Th The location of r	ne plate _{2 h} as maximum tem	constant	thermal c	onductivity of		
	d)	A person is found temperature of body is 8 w/m ² ⁰ C .Model .Estimate the approxi	is measured to b ling the body o mation time of c	be 25ºC when f 30 cm diam leath of that p	found. The neter, 1.7 r erson. If wa	heat trans n long cyli ater proper	sfer coefficient indrical shape ties at 31ºC is		
		K=0.617 W/m ⁰ C ,ρ= 9 basic knowledge)	210 210 kg/m ³ and	210 210 Cp =4178 J/kg	°C (Assum	e body tem	iperature nom		

210	210	210	210	210	210	210	210

- f) Heat is being transferred by convection from water at 48°C to a glass plate whose surface temperature is exposed to the water at 40°C. The thermal conductivity of water is 0.6 W/m K and the thermal conductivity of glass is 1.2 W/m K. The spital gradient of
- temperature in the water at water glass interference is $\frac{dt}{dy} = 10^{4}$ k/m ,Find the value of temperature in glass at water glass interference in k/m and heat transfer coefficient 'h' in W/m²K
 - g) Define fin Fouling in heat exchanger? Explain different types of fouling.
 - h) Derive radiative resistance and space resistance for grey enclosure.
 - i) State the Buckingham's π Theorem. Explain the various parameter used in forced convection. Using dimensional analysis obtain an expression for Nusselt number in terms of Reynolds number and Prandtl number.²¹⁰
 - **j)** With neat sketch explain the concept of Hydrodynamic and thermal boundary layers for flow over a flat plate.
 - k) With neat sketch explain the boiling regimes for pool boiling.
 - I) Water at 20°C at 1 atm flows over flat plate at a speed of 0.7 m/s .The width of the plate is 1.5 m .The plate is entirely heated to temperature of 60°C .Calculate the heat transfer in first 40 cm length using Reynolds Colburn analogy. Properties at 40°C is

210
$$\mu = 6.556 \times \frac{10^{-4} Kg}{ms}$$
, $C_p = 4.1740 \frac{kL}{Kg}$ °C, $K_f = 0.6328 W/m$ °C, $Pr = 24.334 \rho = 992.042 kg/m^3$

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

	Q3	Prove that $T = T_{\infty} + \frac{\dot{q} \cdot R}{2h} + \frac{q_g R^2}{4k} \left[1 - \left(\frac{r}{R}\right)^2 \right]$ for solid cylinder with uniform heat generation.	(16)
210	210	210 210 210 210 210	210
	Q4	Derive the conservation of momentum and energy equations for 2-dimensional incompressible flow of a fluid.	(16)
	Q5	Explain the ϵ - NTU method of analysis for both parallel flow and counter flow heat exchanger.	(16)

210 Q6 210 What is a Radiation shield? Explain the Electrical analogy for two parallel infinite (16) 210 planes separated by one Radiation shield.

				210	210
210 210 210	210	210	210	210	210

210	210	210	210	210	210	210	210