
	Degistration No.									
	Registration No: -									
Tota	I Number of Pages:02210		210	210			210	210	B.Tech210 PEE5I103	
5 th Semester Regular / Back Examination 2019-20 DIGITAL SIGNAL PROCESSING BRANCH:ELECTRICAL Max Marks: 100 Time: 3 Hours										
	210 210 Q.Code: HRB226 210 210									
	Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.									
The figures in the right hand margin indicate marks. Part- I										
Q1	Only Short Answer Type	Questions	(Answer A	_	11-1				(02x10)	
·	Suggested Words: How, Why, Determine, Derive, State, Write, Create, etc									
a)	How is an LTI system characterized in discrete time domain. Differentiate between zero input and zero-state response of a discrete system.									
b) c)	210	•	2111	sponse of a	discrete	e systen	n. 210	210	210	
d)	State the modulation property in DTFT. Enumerate those properties of DFT which are exploited to design efficient methods for calculating DFT									
e) f) g) h)	State the common characteristic of any gradient descent algorithm? Give the weight updation rule for LMS algorithm, explaining each parameter in the expression. Express and explain the relationship between Discrete Fourier Transform and Fourier Transform? Give the difference equation and system function expression for an FIR filter. What is the z-transform of the finite duration signal:									
j)	Comment on the shape of ROC for an infinite duration, right-sided signal?									
J)	Part- II									
Q2	Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (06x08) Analyze, Justify, Design, Formulate, Calculate, Develop, Illustrate, Explain, Distinguish, Differences &									
a)	210 210 Determine the particular so	Jution of the		imilarities			210	210	210	
ω,	Determine the particular solution of the difference equation: 5 1 (2)									
	$y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n)$									
b)	When the forcing function i The impulse response of a input $x(n) = \{1, 4, 3, -1\}$	Linear Tin	ne Invariant	•		-	-	is excited by an		
c)	input $x(n) = \{1, 4, 3, -11\}$. Determine the output of the system graphically. Define what are poles and zeros of a z-transform $X(z)$. Explain with an example that there are exactly									
,	same number of poles and zeros, if we count the poles and zeros at zero and infinity.									
d)	Compute the convolution of the following signals by means of z-transform:									
			•	$\left(\frac{1}{3}\right)^{n}, n \ge \left(\frac{1}{2}\right)^{n}, n < \left(\frac{1}{2}\right)^{n}$,			0.40		
	210 210		$x_2^{210}(n) =$	$=\left(\frac{1}{2}\right)^n u(n)$)		210	210	210	
e)	What is the significance or using time domain formula			(4)		ılar con	volution of	the sequences		

 $x_1(n) = \{1, 2, 3, 1\}$ $x_2(n) = \{4, 3, 2, 2\}$

