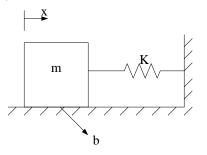

RN190012237

	andre .		
	Registration No:		
Tota	l Number of Pages : 3	AR-17 B.T	TECH
B.TECH 5 th SEMESTER EXAMINATIONS, NOV/DEC 2019			
BELPC5040 CONTROL SYSTEM-II			
EE BRANCH			
Time : 3 Hours Maximum : 100 Marks			
Answer ALL Questions The figures in the right hand margin indicate marks.			
PART – A: (Multiple Choice Questions) 10 x 2=20 Mark			
Q.1. Answer <u>All</u> Questions			
u		system is $\dot{X} = AX + BU$, where $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. The state transition matrix is	
	(a) $\begin{bmatrix} te^t & 0\\ e^t & e^t \end{bmatrix}$ (b)	$\begin{bmatrix} te^t & 0\\ e^{-t} & e^{-t} \end{bmatrix} (c) \begin{bmatrix} e^{-t} & 0\\ te^{-t} & e^{-t} \end{bmatrix} (d) \begin{bmatrix} e^t & 0\\ te^t & e^t \end{bmatrix}$	
b	The term backlash is as	ssociated with	[CO3] [PO1]
	(a) Servomotors (b) Induction relays (c) Gear trains (d) Tacho generators		
c	The stability of non-linear system (a) Disturbed steady state coming back to its equilibrium state.		
		o be in closed trajectory.	
		s oscillations of the systems.	
	(d) All of the above.		[CO1] [PO1]
d	The visual analogy of the Lyapunov energy description is		
e	(a) Ellipse (b) Circle (d) Square (d) Rectangle Conditions of are necessary and sufficient condition for the asymptotic stability of the		
C	Conditions of are necessary and sufficient condition for the asymptotic stability of the [CO3] system.		
	(a) Linear system (b) Krasovskii's method c) Positive definiteness (d) Variable gradient method		
f			[CO1] [PO2]
		al time constant (b) Smaller than mechanical time constant	
g	(c) Larger than mechanical time constant (d) Not related to mechanical time constant The system $\dot{X}(t) = AX(t) + BU(t)$ with $A = \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is [CO4] [PO2]		
5			
	(a) Unstable and uncon		
h	(c) Unstable but controllable (d) Stable and controllable Laplace Transform is not applicable to nonlinear system because		
	Laplace Transform is not applicable to nonlinear system because [CO1] [PO1 (a) Nonlinear systems are time varying		
		vsis is easier than frequency domain analysis	
		re not zero in nonlinear systems	
i		is not applicable to nonlinear system the equation for damping factor as in linear system is called	
1		on(b)Vander Pol's equation (c)Constant method (d)Non-variable gradient method	[CO3] [PO1]
j		for the state variable representation $\dot{X} = AX + BU$, $Y = CX + DU$ is given by	
-		B (b) $B(SI - A)^{-1}C + D$ (c) $D(SI - A)^{-1}B + C$ (d) $C(SI - A)^{-1}D + B$	
PART – B: (Short Answer Questions) 10X2=20 Marks			
Q.2. Answer ALL questions			
a	What are the different	types of limit cycle depending on the pattern of the trajectories in the	[CO1] [PO1]
b	vicinity? Explain with	•	[CO4] [PO1]
c	-		[CO4] [PO1] [CO4] [PO2]
d			[CO3] [PO2]
u	$G_q(z) = \frac{0.5z^2 - 1.2z + 0.7}{z^3}$	<u>7</u>	
	<i>q</i> (2) = <i>z</i> ⁸		


e Write short notes on Lyapunov's second method.

[CO1] [PO1]

RN190012237

b A simple mass, spring and viscous friction system is shown in the figure. Show that the 5 [CO3] [PO1] system is stable.

с

OR Using Lyapunov's method, investigate the stability of the system: [CO1] [PO1] $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 8

d Determine the stability of the system described by the following equations: 7 [CO4] [PO2] $\dot{X} = AX$, $A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$

==0==