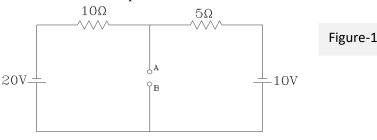
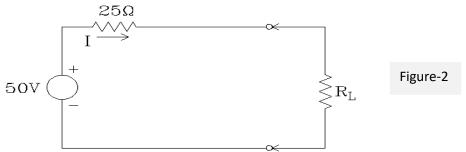


RN19001843

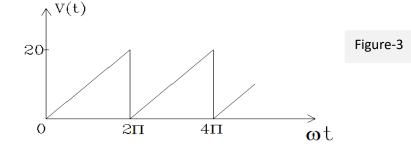
	Registration No:														
Tota	al Number of Pages : 2				AR-1						B.TEC	Н			
		B.TECH 3 rd	SEM	ESTE	R EXA	MINA	ATION	NS, N	OV/D	DEC 20	019				
			C3030/I												
			Con	nmon	to AI	EIE/EO	CE/EF	C/EEE	1						
	Network Theory														
Time : 3 Hours									Maximum : 100 Marks						
				Ans	wer A	LL Qu	estion	s							
		The f	igures i	n the	right h	and m	argin i	indicat	e mar	ks.					
		<u> PART – </u>	Ā: (Mu	iltiple	e Choi	ce Que	estions	s) 10 x	2=20	Mark	<u>.</u>				
Q.1	. Answer <u>All</u> Questions	i									_				
а	Norton's equivalent Ci	rcuit Consist	s of									CO1PO1			
	a)Voltage source in par			b) V	oltage	source	in ser	ies wi	th resi	stance					
	c) Current source in ser														
b	The reciprocity theorem			,			1					CO1PO1			
	a)Linear networks only			twork	s only										
	c) Linear /bilateral netv	works d) Nei	ther of	the T	WO										
с	For Physically realizable circuit, input response is										CO1PO1				
	a) Zero for $t < o$ b) Zero for $t > o$ c) One for $t < o$ d) Infinite for $t > o$														
d	Which parameters are	widely used i	n transi	missic	on line	theory	7					CO2PO1			
	a)Z parameters b) Y H			CD par	ramete	rs d)	H par	amete	rs						
e	A function x(t) is said t	-										CO2PO1			
	a) x(-t) b) -x	. ,	c) x (2t	<i>,</i>) x(t)									
f	Any periods function c					ies wh	en the	functi	ion ha	ving		CO2PO1			
	a) Infinite number of fi														
	b)Final number of infir			-											
	c) Final number of fini			a peri	od										
	d) Infinite number of fi		nuities									COADOI			
g	A high pass filter is on											CO3PO1			
	a)passes all high freque														
	b)Attenuates all low fro	•				£			11	£	waine alterna aut off				
h	c)attenuates all frequent		design	aleu c	ut-on	Ireque	ncy,an	ia pass	ses an	Ireque	encies above cut-off	CO3PO1			
11	An ideal filter should have a) Zero attenuation in the pass band											COSFOI			
	b) Infinite attenuation in the pass band														
	c)Zero attenuation in the attenuation band														
	d) None of the above														
i	·	ssesses one (of the c	onditi	ons th	at						CO4PO1			
1	Hurwitz polynomial possesses one of the conditions that a)all the quotients in the polynomial p(s) must be positive									004101					
	b) The roots of P (s) must lie on the right half of the S-plane														
	c)The ratio of P (s) and p' (s) gives negative quotients														
	d) P (s) may have missing terms														
j	In the first foster form,		of first	elem	ent ca	oacitor	C_{o} in	dicates	5			CO4PO1			
5		ole at w= ∞	c) zer												


RN19001843

CO3PO2



PART – B: (Short Answer Questions) 10X2=20 Marks


Q.2. Answer <u>ALL</u> questions a Determine Norton's equivalent circuit at terminals AB for the circuit shown below in figure 1 CO1PO1

b Determine the value of load resistance when the load resistance draws maximum power. Also find the CO1PO1 value of the maximum power for figure 2

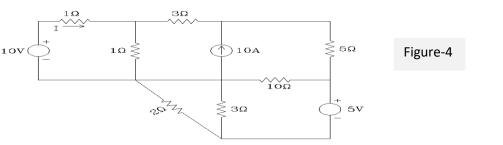
- c What is the coupling coefficient when all the flux of coil 1 links with coil 2? CO1PO1
- d Determine the inverse Laplace transform of the function. $\left\{\frac{4}{s^2+64}\right\}$ CO2PO2 e The Z parameters of a two-port network are CO2PO2
- e The Z parameters of a two-port network are $COZ_{11}=10\Omega; z_{12}=15\Omega; z_{12}=z_{21}=5\Omega$. find the equivalent T network.
- f Draw the pole zero diagram for the given network function $V(s) = \frac{4(s+2)}{(s+1)(s+3)}$ CO2PO2
- g Find the Fourier series for the waveform shown in figure 3

- h Design a low pass filter having a cut-off frequency of 2KHZ to operate with a terminated load resistance CO3PO2 of 500Ω
- i For the given denominator polynomial of a network function, verify the stability of the network using the CO4PO2 Hurwitz polynomial $Q(s) = S^3 + S^{2+}3^s + 8$

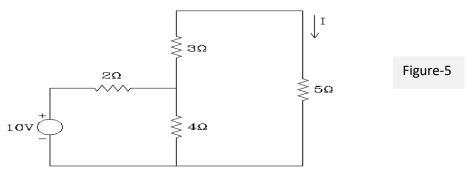
j A periodic function f(t) having a time period T repeats itself after half-time period T/2. The Fourier CO4PO2 series of f(t) would contain
 (a) cosine terms only
 (b) sine terms only
 (c) odd harmonic terms only
 (d) even harmonic terms only

PART – C: (Long Answer Questions) 4X15=60 Marks

RN19001843

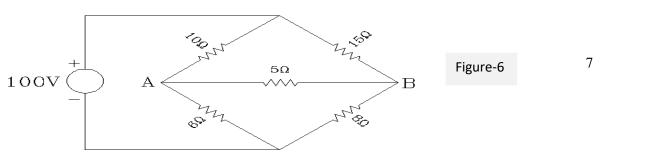

7

8

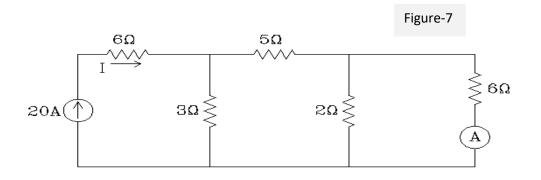


Q.3.

a Determine the current I in the circuit shown below using the superposition theorem. for figure 4 CO1PO2



b Verify the reciprocity theorem for the given circuit shown below in figure -5

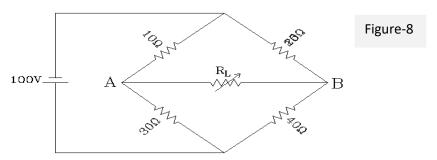


OR

c Use the venin's theorem to find the current through the 5 Ω resistor in figure 6

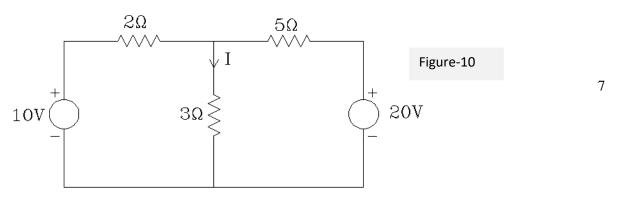
d Using the compensation theorem, determine the ammeter reading where it is connected to the 6 8 CO1PO2 Ω resistor as shown in figure-7. The internal resistance of the ammeter is 2 Ω

Q.4


a Determine the load resistance to receive maximum power from the source; also find the 7 CO2PO2 maximum power delivered to the load in the circuit shown in figure-8

CO1PO2

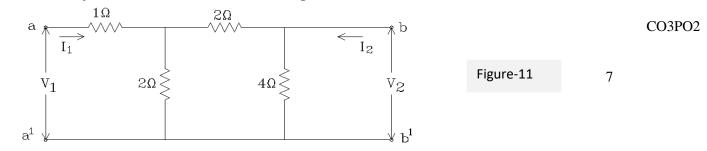
CO1PO2


CO2PO2

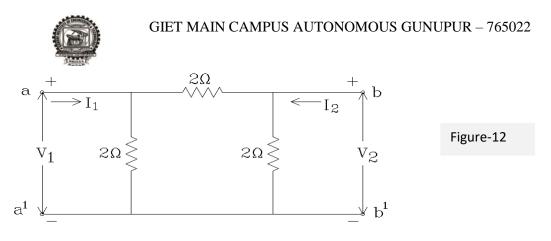
b A series RLC circuit consists of R=20KΩ, L=10mH and C= 1 µF. Calculate frequency of 8 CO2PO2 resonance. A variable frequency sinusoidal voltage of constant RMS value of 50V is applied to the circuit. Find the frequency at which the voltage across L and C is maximum. Calculate the voltage across L and C is maximum. Also calculate the voltage across L and C at frequency of Resonance. Find maximum current in the circuit.

OR

c Calculate the current I Shown in figure-10 using Millman's Theorem.

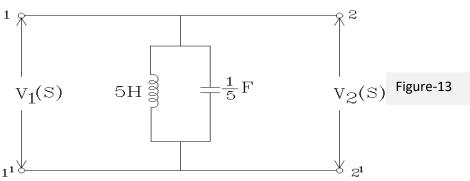


- d A series RLC circuit consists of 50 Ω resistance, 0.2 H inductance and 10MF capacitor with an 8 CO2PO2 applied Voltage of 20V. Determine the resonant frequency. Find the Q factor of the circuit. Compute the lower and upper frequency limits and also find the bandwidth of the circuit.
 Q.5
- aVerify the final value theorem for the following functions.
i) $2+e^{-3t} \cos 2t$
ii) $6(1-e^{-t})$ 5CO3PO2bFind the inverse Laplace transform of the following
a) $\log\left(\frac{S+5}{S+6}\right)$
b) $\frac{1}{(s^2+5^2)^2}$ 10CO3PO2


OR

Find the Z parameters for the circuit shown in figure 11

с


8 CO3PO2

Q.6

a For the given network function draw the pole zero diagram and hence obtain the time domain response verify this result analytically. $I(s) = \frac{3s}{(s+1)(s+3)}$ 7 7

b For the network shown in figure-13, determine transfer impedance $z_{21}^{(s)}$ and $1/21^{(s)}$. Also find 8 CO4PO2 the transfer voltage ratio $G_{21}(S)$ and the transfer current ratio $\alpha_{21}(S)$.

OR

с	The driving point impedance of a one-port reactive network is given by						
	$Z(s) = \frac{(s^2+4)(s^2+25)}{s(s^2+16)}$	7					
d	Obtain the first and second foster networks. For the given denominator polynomial of a network function, determine the value of K for which the network to stable $Q^{(s)} = s^3 + 2S^2 + 4^s + K$	8	CO4PO2				

==0==