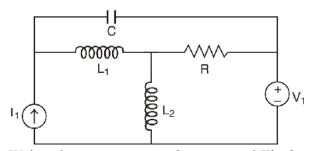


	GIET MAIN CAMPUS AUTONOM
A common of	

	Pagistration No.				
т.	Registration No:				
Tota	al Number of Pages: 2 AR-17 B.TECH				
	3 rd Semester (BACK PAPER) Examination-2019				
	BEEPC3020 NETWORK THEORY				
	EE/EEE Manimum 100 Marks				
	Time: 3 Hours Maximum: 100 Marks				
	Answer ALL Questions				
	The figures in the right hand margin indicate marks.				
0 1	PART – A: (Multiple Choice Questions) 10 x 2=20 Mark				
Q.1.	. Answer <u>All</u> Questions				
a	In Superposition theorem, while considering a source, all other voltage sources are?				
	a) open circuit b)short circuited c) change its position d) removed from the circuit				
b	Superposition theorem states that the response in any element is the of the responses that				
	can be expected to flow if each source acts independently of other sources.				
	a) algebraic sum b)vector sum c) multiplication d)subtraction				
c	If z-parameters are $z_{11} = 40$, $z_{22} = 50$ and $z_{12} = z_{21} = 20$, what would be the value of y_{22}				
	a. 4/160 b. 5/160 c. 10/160 d. 15/150				
d	Which is the correct condition of symmetry observed in z-parameters?				
	a. $z_{11} = z_{22}$ b. $z_{11} = z_{12}$ c. $z_{12} = z_{22}$ d. $z_{12} = z_{21}$				
e	An open circuit reverse voltage gain in h-parameters is a unit less quantity and generally equivalent				
	to h. L. / L. (keeping $V_{c} = 0$)				
	a. V_1 / I_1 (keeping $V_2 = 0$) b. I_2 / I_1 (keeping $V_2 = 0$) c. V_1 / V_2 (keeping $I_1 = 0$) d. I_2 / V_2 (keeping $I_1 = 0$)				
f	In a certain parallel resonant band-pass filter, the resonant frequency is 14 kHz. If the bandwidth is 4				
1	kHz, the lower frequency is				
	a)7 kHz b) 10 kHz c)12 kHz d) cannot be determined				
g	In a series resonant band-pass filter, a lower value of Q results in				
U	a) a higher resonant frequency b) a smaller bandwidth				
	c) a higher impedance d) a larger bandwidth				
h	If there are 5 branches and 4 nodes in graph, then the number of mesh equations that can be formed are?				
	a) 2 b) 4 c) 6 d) 8				
i	The dual pair of capacitance is?				
	a) capacitance b) resistance				
	c) current source d) inductance				
j	How many fundamental cutsets will be generated for a graph with 'n' number of nodes?				
	a. $n+1$ b. $n-1$ c. $n^2(n-1)$ d. $n/n-1$				
	PART – B: (Short Answer Questions) 10X2=20 Marks				
_	Q.2. Answer <u>ALL</u> questions				
a	Which theorem obeys laws of conservation of energy?				
b	Under what condition Norton theorem is applicable.				
c d	State and explain Thevenin's theorem. Distinguish between steady state and transient response.				
e e	What is the significance of time constant of R-L circuit?				
f	A system has input unit step and transfer function				
1					
	$T(s) = \frac{1}{s^2 + 3s + 5}$. Find output of the system at steady state				
g	What are critical frequencies? Why they are so called?				
h	In a given RL type high pass filter R = 3 K Ω and fc= 2000 KHz. Find out the value of L.				
i	Mention the properties of RC driving point impedance.				
J	List three properties of positive real function				

PART – C: (Long Answer Questions) 4X15=60 Marks


	Answer <u>ALL</u> questions	
Q.3		
a	Write short note any Compensation theorem.	7
b	Write short note any Tellegen's theorem.	8
	OR	
c	State & explain Superposition Theorem.	7
d		
Q.4		
a	A network function is given as	
	2s	_
	$I(s) = \frac{2s}{(s+1)(s+2)}$	7
	Obtain the time-domain response from the pole- zero plot.	
b	Describe the Time domain behavior from Pole-Zero	8
	OR	
c	What information do poles and zeros provide in respect of network to which they relate?	7
d		
Q.5		
a	Design a low pass filter as π - and T-networks having a cutoff frequency fc =1000Hz to operate with a	
	terminated load resistance of 200Ω . Also find the frequency at which this filter offers attenuation of	7
	19.1 dB.	
b	Design a constant K-type HPF filter (both T & π) having nominal impedance of 700 Ω and cut-off	8
	frequency of 6000Hz. Also determine the characteristic impedance, attenuation constant and Phase shift at 4000Hz & 10000Hz.	
	OR	
c	Design a constant K band pass filter with cutoff frequencies $3kHz$ and $7.5kHz$ and nominal characteristic impedance of 900Ω .	7
		0

Design a constant K band stop filter with cutoff frequencies 3kHz and 7.5kHz and nominal characteristic impedance of 900Ω .

8

Q.6

For the network shown in fig., determine incidence matrix. Also find number of trees possible for the network.

Write short answer on Cut set and Tie Set Matrix. b

8

7

Check whether the polynomial is Positive Real

$$F(s) = \frac{2s^2 + 2s + 1}{s^3 + 2s^2 + s + 2}$$
s the function.

Using Foster Form II, synthesis the function.

$$Y(s) = \frac{(s^2 + 5)(s^2 + 13)}{s(s^2 + 9)}$$

