0		210	210	210	210	210	210	210			
	r	Dogio	tration No.								
	ſ	xegis	stration No :								
	Tota	al Nu	mber of Pages : 0)2			P	B.Tech CS3I101			
0		210	210	Max	<u> </u>	=	210	210			
	_			Q.CC	DDE : HB601						
	Ar	iswe	r Question No.1 (ompulsory, ai om Part-III.	ny EIGHT from F	Part-II and any	/ TWO			
0		210	² The f	igures in ² the righ	010	indicate marks	210	210			
					Part-I						
	Q1	a)	Only Short Answer Convert (95.5) ₁₀ = (er Type Questions	(Answer All-10))		(2 x 10)			
		b)	Assume the numb	er (10011001) ₂ in 2	's complement	representation. WI	nat will be the				
		C)	decimal equivalent Express the given	t of the number? function in sum of m	ninterms form. F((x, y, z) = 1					
0		d) ⁰									
		e)	Write is the advant	ages of tabulation m	nethod?						
		f) a)									
		g) h)		e between static and							
		i)	A MOD-16 counter MSB.	r clocked by 10 KHz	clock signal. Fi	nd the frequency a	t the output of				
0		j) 0		t different from gene	ral flow ² chart?	210	210	210			
					Part-II						
	Q2	a)	The seven bit eve	ort Answer Type Q n parity Hamming c age assuming that at	ode 0011011 re	ceived through a r	noisy channel.	(6 x 8)			
		b)		then show that $\overline{\mathbf{X}}\mathbf{Z}$							
C		C) 210	Simplify the exprese F(X, Y, Z) = (X + I)	ssion using boolean	algebra. 210	210	210	210			
		d)		an function using K	-Map.						
		,	$F(A,B,C,D) = \prod M(1,2,3,8,9,10,11,14).d(7,15)$								
		e) f)	An 8 to 1 MUX ha	fferent from a half a s inputs A, B and C data inputs D₀ throu	connected to th	ne selection inputs	S_2 , S_1 and S_0				
)		210 g)	Distinguish betwe	ne the boolean expr en static-0 and sta ment the boolean fu	itic-1 hazard. F	ind a circuit that	has no static	210			
		h)		2 line decoder with f			e and a 2 to 4				
			line decoder. Use l	block diagram for the	e components.						
		i)	Show that the char Q'(t+1) = J'Q	racteristic equation f !'+KQ	or the compleme	ent output of a JK f	lip flop is				
0		210	210	210	210	210	210	210			

210		210		210	210	210	210	210	210				
210		j) 210 I)	Design a 4-bit shift register with parallel load using D-flip flops. There are two control inputs: shift and load. When shift=1 and load=0 the content of the register is shifted by one position. New data is transferred to the register when load=1 and shift=0. If both control inputs are equal to 0, the content of the register does not change. Assume that 1011 input data pattern is loaded into a 4-bit ring counter. Sketch the resulting flip flop Q output waveforms (assuming positive edge triggering). Draw the ASM chart for a sequential circuit having two D-FF and one input x. when x=0, the state of the circuit remains the same. When x=1, the circuit goes through the state transition from 00 to 01 to 11 to 10 back to 00 and repeats.										
210	Q3	210	Part-IIIOnly Long Answer Type Questions (Answer Any Two out of Four)Simplify the following four variable Boolean function using Quine-Mcclusky method. 210 (16) $F(A,B,C,D) = \sum m(1,3,5,10,11,12,13,14,15)$ 210 210 Implement a full subtractor using demultiplexer. Design a 4-bit by 3-bit binary multiplier using 4-bit added and necessary gates.(8)										
	Q4	a) b)											
	Q5)", it will count	from "000" to "11	DOWN counter. C 1" and when X= "	1" it will cou	int from "111" to	(16)				
210	Q6	210	A sequential specified no A(t+1) = 2 B(t+1) = 2 Z = B (i) Draw th (ii) Draw th (iii) Draw th	al circuit with ext state and o x'y + xA x'B+ xA ne logic diagra ne state table f ne correspond	output equation a im of the sequent for the sequential ing state diagram	ial circuit. circuit.	210 nd Y and on 210	210 e output Z. The 210	210 (16) 210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				