210	210	210	210	210	210	210			
					n No ·	Registra	F		
						-			
B.Tech ET3I001	Р				of Pages : 02	l Numb	Tota		
210	210 rt-ll and any	S	ck Examination DUCTOR DEVIC CH : ECE, ETC Marks : 100 e : 3 Hours DDE : HB687 ompulsory, any	SEMICON BRAN Ma Tii Q.C		210 swer Q	An		
210	210		m Part-III.	, fi	-	210			
LIU		dicate marks.	t hand margin in	res in the rig	The figu	110			
(2 x 10)			Part-I	who Question	Short Answer 1	0	Q1		
(2 x 10)	y of carriers	individual mobilit	valent mobility and	prium?	e Thermal Equili	a) Do b) W	Q I		
210	e X and Y 210	and mention th	cteristics of Diode	e voltage chai		c) Di			
	What do you mean by base-width modulation? Determine the total number of energy states in GaAs between E_c to $E_c + K_BT$ at T = 300K, where K_B is Boltzmann's constant, (Given that electron effective mass of GaAs, $m_n^* = 0.067m_0$ and Planck's constant, $h = 6.6 \times 10^{-34} Js$.) Distinguish between PN-junction diode and Schottky barrier diode.								
210	210		resistance? act and rectifying j inder flat band con	ween ohmic co urface potential		h) W i) ⁰ W			
			Part-II						
(6 x 8)	ed n – type	diffusion. on-uniformly dop	uestions- (Answ due to both drift ar ectric field for a r on between diffusi	for total curren	ve the expression ve the expression	a) Do b) Do	Q2		
210	210	rrier ² distribution. n junction. of a pn junction. e breakdown.	ion from minority on acitance in case of of depletion region rough and Avalance lation.	de current equ for junction ca ice charge widt etween Punch t Base width Moo	ulate the ideal dic ve the expression ulate the total spa the difference be uss briefly about 1	 c)⁰ C; d) D; e) C; f) W; g) D; 			
	num electric		r n-type and p-type t, built-in potential			•			
210	on doped to etal is $\emptyset_m =$	and n-type silico k function of me	applied bias if we semiconductor is	conductor diod 300 <i>K</i> 2 for zer	in a metal-semice $10^{16} cm^{-3}$ at T =	fi€ 210 N _d			
	voltage of a		$0^{-14}C^2N^{-1}cm^{-2}$. on and freeze-out.	with $\epsilon_0 = 8.85 \times Complete ioniza$	$cm^{-3}, \epsilon_s = 11.7\epsilon_0$ e short notes on 0	10 j) W			
	g		·		Capacitor. uss aboutC-V Ch	M			
						-			
210	210	210	210	210	210	210			

210	Q3	 Part-III Only Long Answer Type Questions (Answer Any Two out of Four) Q3 a) Derive the expression for thermal equilibrium hole concentration in an intrinsic semiconductor from Density of states and Fermi Dirac probability function. Calculate the electron and hole concentration in a semiconductor in thermal equilibrium, if n_i= 1.5x10¹⁰ cm⁻³ and holes are 10⁴ times than the electrons per cm³. b) Derive an expression for electric field and potential in the space charge region of a uniformly doped pn-junction. Where does the maximum electric field occur in space charge region? 									
210	Q4	a) b) ²¹⁰ c)	Derive the expression for excess minority carrier electron concentration in the emitter region for the forward active mode of an npn BJT. Using Ebers-Moll model of a bipolar transistor, derive the expressions for emitter and collector currents with necessary equivalent circuit diagram. ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ The electron concentration in silicon is given by $n(x) = 10^{15}e^{-(\frac{x}{L_n})}(x \ge 0)$ where $L_n = 10^{-4}cm$. The electron diffusion coefficient is $D_n = 25 cm^2/s$. Determine the electron diffusion current density at (i) $x = 10^{-4}cm$, (ii) $x = 0$ and (iii) $x \to \infty$.								
210	Q5	a) b)	Derive and Prove that the dep function of the doping concentra Derive quasi equilibrium 210 concentration.Calculate minorit current.	tion in the low doped regionoundary condition for	on. excess minori	ty ₂ çarrier (8	3) 3) ₂₁₀				
210	Q6	a) b) <u>c</u>)₀	Derive an expression for the diode current in an ideal Schottky barrier diode and describe its I-V characteristics. What is threshold inversion in a MOS capacitor? Derive the expression for threshold voltage of a MOS capacitor with p – type semiconductor substrate. An MOS device has the parameters; aluminum gate, p-type substrate with $N_{al} = 3 \times 10^{16} cm^{-3}$, $t_{ox} = 250A^0$ and $Q_{ss}^{'} = 10^{11}e$ Coulomb . cm^{-2} and $\phi_{ms} = -0.981$. Determine the threshold voltage at T = 300 K if, $n_i = 1.5 \times 10^{10} cm^{-3}$, $\epsilon_s = 11.7\epsilon_0$ and $\epsilon_{ox} = 3.9\epsilon_0$; $\epsilon_0 = 8.85 \times 10^{-14}C^2N^{-1}cm^{-2}$.								
210		210	210 210	210	210	210	210				
210		210	210 210	210	210	210	210				
210		210	210 210	210	210	210	210				