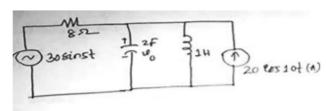
						\neg	
F	Regis	stration No :					
Tota	l Nu	mber of Pages : 02				_	B.Tech
		_	rd			F	PEE3I101
	210	210	S rd Semester Ba			210	210
				ORK THEOR			
				H:ELECTRI : Marks:100			
				ne : 3 Hours			
				ODE : HB602	2		
An	swe	r Question No.1 (Pa	art-1) which is o	compulsory,	any EIGHT f	rom Part-II and ar	y TWO
	210	210	0.10	om Part-III.	210	210	210
	210	The fig	ures in the righ	t hand marg	jin indicate m	narks.	210
		Only Object Assessed	T O	Part-I	40)		(0 40)
)1	a)	Only Short Answer Type Questions (Answer All-10) Which theorem obeys KVL and KCL?					(2 x 10)
	b)	Define coefficient of		hvsical signific	cance?		
	c)	Two coupled coils w				K=0.8. What is the	!
	210	the turn ratio $\frac{N_1}{N_2}$?	210	210	210	210	210
	d)	Prove that resonar					
	•	frequencies?		•		·	
	e)	What is the fourier tra			4 0		
	f) g)	Write symmetry and What is the relation h				7	
	h)	What is the relation between resonant frequency and quality factor? A first order linear system is initially relaxed . For a unit step signal u(t) , the response					
		is $v(t) = (1-e-3t)$ for t		u(t)+δ(t) is ap	plied to the sa	ame initially relaxed	
	210	system what will be		210	210	210	210
	i) j)	What is the necessar An initially relaxed R					,
	3/	step input. What is th			•		
				Part-II			
Q2	۵)	Only Focused-Shor	. .	•	•	•	(6 x 8)
	a)	In a two-element seri $v(t) = 50 + 50\sin 5000$		• ,,	^ ^	•	040
	210	The resulting current		200111299000	(V) 210	210	210
		i(t) = 11.2sin(5000t + 63.4°) + 10.6sin(10000t + 45°) + 8.97sin(20000t + 26.6°) A					
	b)	Determine the network elements and the power dissipated in the circuit. A voltage, $v(t) = 100e^{-25t}$ u(t) volt is applied to the input of an ideal low- pass filter					
	b)	having a cut-off frequency of 25 rad/sec . Calculate the percentage of the total energy					
		transmitted through the filter.					
	c)	The unit impulse response of current of a circuit having R=1 Ω & C = 1F in series is					
	210	given by $[\delta(t)-\exp(-t)]$		rent expression	on when the cir	cuit is driven by the	210
	d)	voltage given as [1-exp(-2t)] u(t). Find the network for the following in Foster 2 and Cauer 1 Form					
	ω,	Tind the network for		$= \frac{2(s+1)(s+1)}{s(s+2)}$			
		T				0 1 11 1	
	e)	The network equation	n for two port neton $0.2V_2$ and $I_2 = -0$	•	current 11 and 1	2 at the two ports as	
		$I_1 = 0.25 V_1 - $ Determine the ABC			rk and hence	write the network	
	210	equation. ₂₁₀	-				
	< 1 U	£ 10	210	210	210	210	210

frequencies.


Determine the impulse response of the linear system whose transfer function given as $3 + 2j\omega$

 $H(j\omega) = \frac{3 + 2j\omega}{(jw)^2 + 6j\omega + 8}$

- h) Write the limitation pole zero in a transfer function?
- i) Synthesis the Foster II from network when its admittance function is given as

$$Y(s) = \frac{s(s^2+3)(s^2+5)}{(s^2+2)(s^2+4)}$$

- j) The current in a 10 ohm resistor is $i(t)=10e^{-2t}u(t)(A)$. What is the energy associated with the frequency band $0 \le \omega \le 2$ rad/s?
- k) Find Vo using Thevenin's theorem in fig 1. 210

I) A coil of inductance L and resistance R, in series with a capacitor is supplied at a constant voltage from a variable frequency source. Find the values of that frequency, in terms of R , L and ω_0 at which the circuit current would be half as much as at resonance .

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

- For a series RLC circuit with R=2 ohm, L=1mH and C=0.4 μ F₀ and a supply voltage v(t)=20 sinwt, find:(a) the resonant frequency ω_o , (b) The half power frequencies, (c) The quality factor and bandwidth, (d) The amplitude of the current at ω_o .
- Q4 a) Write a short note on Cut set and Tie set matrix with examples.
 - b) Show that sum of energy stored by the inductor and capacitor connected in parallel RLC circuit at resonance at any instant is constant and is given by CV².

(8)

- Design a high pass, constant-k type filter with T- section and π-section when the cut-off frequency is 8 KHz and the nominal characteristic impedance is 500Ω . Also determine the attenuation and phase constant for frequencies 5 KHz, 20 KHz.
- A two terminal network consists of a coil with resistance R and inductance L Henries and it is shunted by a capacitor C. The poles and zero of the driving point impedance function z(s) are poles $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$, zero at -1.lf (j0) = -1, Determine the values of R, L and C.