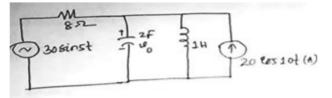
10		210	210	210	210	210	210	210
	F	Regis	stration No :					
		-	l	02				P Toob
	TOLE	ai nu	mber of Pages :	02			F	B.Tech PEI3I104
210		210	210	BRANC Ma Tii	ack Examinati WORK THEOR H : AEIE, EIE, X Marks : 100 me : 3 Hours CODE : HB603	Y	210	210
	An	iswe	r Question No.1	(Part-1) which is	compulsory, a	any EIGHT from F	Part-II and any	y TWO
210		210	² The	fi figures in the rig	rom Part-III. ht hand margi	n indicate marks	210	210
	Q1	a)	Which theorem of	ver Type Question beys KVL and KCL?	?			(2 x 10)
210		b) c) 210 d)	Two coupled coils the turn ratio $\frac{N_1}{N_2}$? Prove that reso frequencies?	nant frequency is	have a coefficie ²¹⁰ the geometric	nt of coupling K=0.	210	210
10		e) f) g) h) ²¹⁰ i) j)	Write symmetry a What is the relation A first order linear is $v(t)= (1-e-3t)$ for system what will What is the necess An initially relaxed	r transform of step f nd reciprocity condi on between resonan r system is initially f or t>0. If a signal be the response ? ssary and sufficient d RC-series network s the Voltage across	ition for Z parame th frequency and relaxed . For a u 3u(t)+δ(t) is app 210 condition of Posi k with R=2M Ω a	quality factor? init step signal u(t) lied to the same in 210 tive real function? nd c=1µF is switche	210 210	210
210	Q2	a) 210	In a two-element $v(t) = 50 + 50 \sin 5$ The resulting curr $i(t) = 11.2 \sin(5000)$	0t + 63.4 °) + 10.6sir	tage v(t) is applie + 20sin20000t(\ n(10000t + 45 °)	es, which is given by /) 210 + 8.97sin(20000t + 2	210	(6 x 8) 210
210		b) c) 210	A voltage, v(t)= having a cut-off fir transmitted throug The unit impulse	response of currer p(-t)u(t)]. Find the cu	s applied to the sec . Calculate t nt of a circuit ha	input of an ideal length he percentage of the ving R=1 Ω & C = $\frac{1}{2}$	e total energy IF in series is	210
		d) e)	Find the network The network equal $I_1 = 0.25V$ Determine the A	for the following in F	$= \frac{2(s+1)(s+3)}{s(s+2)}$ twork give the cu -0.2V ₁ + 0.1V ₂) ırrent I1 and I2 at th		
210		210	equation. ₂₁₀	210	210	210	210	210


- f) A coil having a resistance of 50Ω and inductances 10mH is connected in series with a capacitor and is supplied at constant voltage and variable frequency source. The maximum current is 1A at 750Hz. Determine the bandwidth and half power frequencies.
- **g)** Determine the impulse response of the linear system whose transfer function given as 3^{210}_{\pm} 3^{210}_{\pm}

$$\Pi(j\omega) = \frac{1}{(jw)^2 + 6j\omega + 8}$$

- **h)** Write the limitation pole zero in a transfer function?
- i) Synthesis the Foster II from network when its admittance function is given as

$$Y(s) = \frac{s(s^2+3)(s^2+5)}{(s^2+2)(s^2+4)}$$

- j) The current in a 10 ohm resistor is $i(t)=10e^{-2t}u(t)(A)$. What is the energy associated with the frequency band $0 \le \omega \le 2$ rad/s?
- \mathbf{k}) Find Vo using Thevenin's theorem in fig 1. ²¹⁰

210

I) A coil of inductance L and resistance R, in series with a capacitor is supplied at a constant voltage from a variable frequency source. Find the values of that frequency, in terms of R , L and ω_0 at which the circuit current would be half as much as at resonance.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four) (16) 210 For a series RLC circuit with R=2 ohm, L=1mH and C=0.4µF and a supply voltage Q3 v(t)=20 sinwt, find:(a) the resonant frequency ω_o , (b) The half power frequencies, (c) The quality factor and bandwidth, (d) The amplitude of the current at $^{\omega_o}$. **Q4** Write a short note on Cut set and Tie set matrix with examples. (8) a) b) Show that sum of energy stored by the inductor and capacitor connected in parallel (8) RLC circuit at resonance at any instant is constant and is given by CV^2 . Q5 Design a high pass, constant-k type filter with T- section and π -section when the cut-off (16) frequency is 8 KHz and the nominal characteristic impedance is 500 Ω . Also determine the attenuation and phase constant for frequencies 5 KHz, 20 KHz. Q6 A two terminal network consists of a coil with resistance R and inductance L Henries (16)and it is shunted by a capacitor C. The poles and zero of the driving point impedance function z(s) are poles $-\frac{1}{2} \pm j\frac{\sqrt{3}}{210}$, zero at -1.lf (j0) = -1, Determine the values of R, L and C. 210 210 210 210 210 and C.

210	210	210	210	210	210	210	210

210 210 210 210 210

2