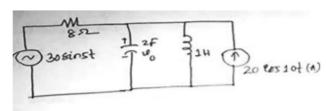
| Tota | ıl Nu    | mber of Pages : 02                                                                                                                                                 |                              |                              |                          | DI              | B.Tech<br>ET3I102    |
|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------|-----------------|----------------------|
|      | 210      | 210 <b>3<sup>rd</sup> S</b>                                                                                                                                        | Semester Bac                 | k Examinatio                 | on 2019-20               | <b>2</b> 10     | _1311 <b>02</b><br>2 |
|      | 210      | 210                                                                                                                                                                |                              | ORK THEORY                   |                          | 210             | _                    |
|      |          |                                                                                                                                                                    |                              | H : ECE, ET                  |                          |                 |                      |
|      |          |                                                                                                                                                                    |                              | Marks: 100<br>e: 3 Hours     |                          |                 |                      |
|      |          |                                                                                                                                                                    |                              | DE : HB606                   |                          |                 |                      |
| An   | swe      | Question No.1 (Part-                                                                                                                                               |                              |                              | ny EIGHT from F          | Part-II and any | / TWO                |
|      | 210      | 240                                                                                                                                                                | 010                          | m Part-III.                  | 210                      | 210             | 2                    |
|      | 2.0      | The figure                                                                                                                                                         | es in the right              | hand margir                  | n indicate marks         | -               |                      |
|      |          | Only Chart Analysis Try                                                                                                                                            | aa Owaatiana (               | Part-I                       |                          |                 | /0 × 40\             |
| Q1   | a)       |                                                                                                                                                                    |                              |                              |                          |                 | (2 x 10)             |
|      | b)       | Define coefficient of coupling and its physical significance?                                                                                                      |                              |                              |                          |                 |                      |
|      | c)       | Two coupled coils with                                                                                                                                             | $L_1 = 0.6 = L_2 \text{ ha}$ | ve a coefficier              | nt of coupling K=0.      | 8. What is the  |                      |
|      | 210      | the turn ratio $\frac{N_1}{N_2}$ ?                                                                                                                                 | 210                          | 210                          | 210                      | 210             | 2                    |
|      | d)       | Prove that resonant f frequencies?                                                                                                                                 | requency is th               | ne geometric                 | mean of the tw           | o half power    |                      |
|      | e)       | What is the fourier transform of step function?                                                                                                                    |                              |                              |                          |                 |                      |
|      | f)       | Write symmetry and reciprocity condition for Z parameter?                                                                                                          |                              |                              |                          |                 |                      |
|      | g)<br>h) | What is the relation between resonant frequency and quality factor?  A first order linear system is initially relaxed . For a unit step signal u(t) , the response |                              |                              |                          |                 |                      |
|      | ,        | is $v(t) = (1-e-3t)$ for $t>0$ .                                                                                                                                   | If a signal 3u               |                              |                          |                 |                      |
|      | 210      | system what will be the What is the necessary a                                                                                                                    |                              | 210                          | 210                      | 210             | 2                    |
|      | i)<br>j) | An initially relaxed RC-s                                                                                                                                          |                              |                              |                          | ed on to a 10V  |                      |
|      |          | step input. What is the V                                                                                                                                          | oltage across tl             | he capacitor af              | ter 2 seconds?           |                 |                      |
|      |          | Only Facus of Chart A                                                                                                                                              |                              | Part-II                      | <b>A F</b> iole <b>t</b> |                 | (C 0)                |
| 2    | a)       | Only Focused-Short A                                                                                                                                               |                              |                              |                          |                 | (6 x 8)              |
|      | 210      | $v(t) = 50 + 50\sin 5000t +$                                                                                                                                       | 30sin10000t +                | . ,                          | • • • •                  | 210             | 2                    |
|      |          | The resulting current is $g(t) = 11.2 \sin(5000t + 63)$                                                                                                            | •                            | 0000t + 45 °) +              | - 8 97sin/20000t + 1     | 26 6 °) Δ       |                      |
|      |          | i(t) = 11.2sin(5000t + 63.4°) + 10.6sin(10000t + 45°) + 8.97sin(20000t + 26.6°) A  Determine the network elements and the power dissipated in the circuit.         |                              |                              |                          |                 |                      |
|      | b)       | A voltage, v(t)= 100e <sup>-25t</sup> u(t) volt is applied to the input of an ideal low- pass filter                                                               |                              |                              |                          |                 |                      |
|      |          | having a cut-off frequency of 25 rad/sec . Calculate the percentage of the total energy transmitted through the filter.                                            |                              |                              |                          |                 |                      |
|      | c)       | The unit impulse response of current of a circuit having R=1 $\Omega$ & C = 1F in series is                                                                        |                              |                              |                          |                 |                      |
|      | 210      | given by $[\delta(t)-\exp(-t)u(t)]$ . Find the current expression when the circuit is driven by the                                                                |                              |                              |                          |                 |                      |
|      | d)       | voltage given as [1-exp(-2t)] u(t). Find the network for the following in Foster 2 and Cauer 1 Form                                                                |                              |                              |                          |                 |                      |
|      | •        |                                                                                                                                                                    | 7(s) -                       | $\frac{2(s+1)(s+3)}{s(s+2)}$ | <u>)</u>                 |                 |                      |
|      | ۵)       | The network equation for                                                                                                                                           |                              |                              |                          | o two porto oo  |                      |
|      | e)       | The network equation fo $I_1 = 0.25V_1 - 0.2$                                                                                                                      | •                            | •                            | ment ii and iz at th     | e two ports as  |                      |
|      |          | Determine the ABCD equation.                                                                                                                                       |                              |                              | and hence write          | the network     |                      |
|      |          |                                                                                                                                                                    |                              |                              |                          |                 |                      |

frequencies.


Determine the impulse response of the linear system whose transfer function given as  $3 + 2j\omega$ 

 $H(j\omega) = \frac{3 + 2j\omega}{(jw)^2 + 6j\omega + 8}$ 

- h) Write the limitation pole zero in a transfer function?
- i) Synthesis the Foster II from network when its admittance function is given as

$$Y(s) = \frac{s(s^2+3)(s^2+5)}{(s^2+2)(s^2+4)}$$

- j) The current in a 10 ohm resistor is  $i(t)=10e^{-2t}u(t)(A)$ . What is the energy associated with the frequency band  $0 \le \omega \le 2$  rad/s?
- k) Find Vo using Thevenin's theorem in fig 1. 210



I) A coil of inductance L and resistance R, in series with a capacitor is supplied at a constant voltage from a variable frequency source. Find the values of that frequency, in terms of R , L and  $\omega_0$  at which the circuit current would be half as much as at resonance .

## Part-III

## Only Long Answer Type Questions (Answer Any Two out of Four)

- For a series RLC circuit with R=2 ohm, L=1mH and C=0.4 $\mu$ F<sub>0</sub> and a supply voltage v(t)=20 sinwt, find:(a) the resonant frequency  $\omega_o$ , (b) The half power frequencies, (c) The quality factor and bandwidth, (d) The amplitude of the current at  $\omega_o$ .
- Q4 a) Write a short note on Cut set and Tie set matrix with examples.
  - b) Show that sum of energy stored by the inductor and capacitor connected in parallel RLC circuit at resonance at any instant is constant and is given by CV<sup>2</sup>.

(8)

- Design a high pass, constant-k type filter with T- section and π-section when the cut-off frequency is 8 KHz and the nominal characteristic impedance is  $500\Omega$ . Also determine the attenuation and phase constant for frequencies 5 KHz, 20 KHz.
- A two terminal network consists of a coil with resistance R and inductance L Henries and it is shunted by a capacitor C. The poles and zero of the driving point impedance function z(s) are poles  $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$ , zero at -1.lf (j0) = -1, Determine the values of R, L and C.