210	210	210	210	210	210	210	
					ation No :	Regis	F
B.Tech CE3I104	D				per of Pages : 02	l Nur	Tota
210	210		RANSFER - I H : CHEM, PT Marks : 100 e : 3 Hours DE : HB887 ompulsory, any	BRAN Max Tim Q.Co art-1) which is o	210 3 Question No.1 (Pa	210 Swer	An
210	210	ndicate marks.	m Part-III. hand margin i	010	² The fig	210	
(2 x 10)			Part-I	Type Questions	only Short Answer tate Fick's Law of D	a)	Q1
210	210	210	ture. ₂₁₀ nce nethod.	n absorption and o used in absorption wet bulb temper n Coefficient? d give its significa of McCabe Thiele ve its significance e of relative volati	ifferentiate betweer ist the equipments of efine dew point and /hat is —Distribution /rite the limitations of efine HETP and giv /rite the significance efine Tray efficience	b) c) d) e) f) g) h) i)	
(6 x 8) ²¹⁰	Part-II Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) Ammonia gas (A) diffuses through nitrogen gas (B) under steady state conditions with nitrogen non-diffusing. The partial pressure of A at location is 1.5 x 104 Pa and that at location 2 is 5 x 103 Pa. the location 1 and 2 are 15 cm apart. The total pressure is 1.103 x 105 Pa and temperature is 298 K. calculate the flux of diffusion of ammonia. Also calculate flux of diffusion for equimolar counter diffusion assuming that nitrogen is also diffusing. Take diffusivity at prevailing conditions are 2.30 x 10-5 m2 /s.						Q2
210	210 dvantages. re containing or equilibrium water to gas	210 vantages and disa 2 from gas mixtu x can be used fo 02 kg water The	210 raction. n terms of its adv recover 98% CO v relation y = 14 vir and x is kg C	B. 210 a for solvent in ex and packed tower b be designed to air using water. s kg CO2/ kg dry	xplain molecular di prough non ² diffusing tate selection criter compare tray tower packed tower is to 0% CO2 and 90% conditions where y is ate is kept 30% mo	b) 210 c) d) e)	
210	cal plates by ert enters the	mber of theoretic plute and rest ine re. 90% of the orig	he minimum nu ng 10 mole% sc .658 kPa pressui	ire to determine hod. s mixture contaii nperature and 10	TU is 1 meter. tate different theorie xplain the procedu onchon Savarit met 000 m3 /h of a ga bsorber at 300 k tel emoved. Solute free	ी) g) h)	
	blute when it				aves the tower at the		

210		k)]) 210	Air (dry bulb temp. = quantity of water at 2 chamber 95% saturate bulb temperature and Briefly describe the wo	3 °C in a spray ed. Determine th enthalpy of the e	chamber. The w e temperature, th exit air.	ater is recycled. ne relative humic	Air leaves the	210
210	Q3	210	Only Long Answer T State Fick's first law					(16)
			type flux and J-type flu	JX.				
210	Q4	210	A counter current pla containing 5% ammon mole NH3/mole of wa air. It is necessary to absorber at 20 0C. As (mole NH3/mole H2O)	nia by volume. Iter. The ^c scrubbe absorb 85% of t sume dilute solu	The scrubber is f er water flows at he ammonia pres tion, take Henry's	fed with water of a rate of 1 mole sent in the gas b s law constant =	ontaining 0.002 water/mole of y operating the 0.8 mole NH3 /	(16) 210
210	Q5	210	A continuous distillation methanol and 40 m methanol and water value is used? Assum moles of overhead of is at boiling point.	ole% water inte product 95 mole e relativê volatil	o an overhead e% water. Reflux ity of methanol a	product contain ratio of 2 times and water is 3. C	ing 90 mole% s the minimum Calculate¹(i) the	(16) 210
	Q6		Two air streams are r	nived before fee				<i></i>
			control. Stream 1: flo stream 2: flow rate = the enthalpy, humidity	w rate = 2kg/s, 3kg/s, temperat	temperature = 5 ure = 25 °C, rela	50 °C, relative hi ative humidity =	umidity = 30%; 50%. Calculate	(16)
210		210	control. Stream 1: flo stream 2: flow rate =	w rate = 2kg/s, 3kg/s, temperat	temperature = 5 ure = 25 °C, rela	50 °C, relative hi ative humidity =	umidity = 30%; 50%. Calculate	(16) 210
210 210		210	control. Stream 1: flo stream 2: flow rate = the enthalpy, humidity	w rate = 2kg/s, 3kg/s, temperat and temperatur	temperature = 5 ure = 25 °C, rela e of the mixed air	60 °C, relative h ative humidity = r stream. The tot	umidity = 30%; 50%. Calculate al pressure is 1	
			control. Stream 1: flo stream 2: flow rate = the enthalpy, humidity atm. 210	w rate = 2kg/s, 3kg/s, temperatur and temperatur 210	temperature = 5 ure = 25 °C, rela e of the mixed air 210	i0 °C, relative hi ative humidity = r stream. The tot 210	umidity = 30%; 50%. Calculate al pressure is 1 210	210

210 210 210 210 210 210 210 210 21

210 210 210 210 210 210 210 21