B.TECH

Registration No:					

Total Number of Pages: 2 AR-17 3rd Semester (BACK PAPER) Examination-2019

BMEPC3030

INTRODICTION TO PHYSICAL METALLURGY AND ENGINEERING MATERIALS MECHANICAL

Time: 3 Hours Maximum: 100 Marks

Answer ALL Questions

The figures in the right hand margin indicate marks.

PART - A: (Multiple Choice Questions) 10 x 2=20 Mark

Q.1. Answer All Questions

- a The angle between [111] and [11–2] directions in a cubic crystal is (in degrees)
 - (a) 0 (b) 45 (c) 90 (d) 180
- b Metal with hexagonal close packed structure is
 - (a) silver (b) Iron (c) Magnesium (d) Aluminium
- Stainless steel is so called because of its
 - (a) High strength (b) High corrosion resistance
 - (c) High ductility (d)Brittleness
- d Which transformation starts after the nucleation of ferrite phase?
 - a. Bainite transformation b. Pearlite transformation c. Both a. and b. d. None of the above
- e The process of decomposing martensitic structure, by heating martensitic steel below its critical temperature is called as
 - a. Austenitizing b. Quenching c. Tempering d. None of the above
- f What is meant by corrosion?
 - a. Chemical reaction between anode, cathode and electrolyte, which leads to loss of metal
 - b. Deterioration of metals due to reaction with its environment
 - c. Both a. and b. d. None of the above
- The fastest cooling rate is achieved when steel is quenched in
 - a) air b) oil c) water d) brine
- h Which one of the following is not correct
 - a) Martensite has a BCC structure b) Austenite has FCC structure
 - c) Martensite is a solid solution of carbon in BCC iron
 - d) The martensite which is formed during quenching is too brittle
- i Visible light's wavelength range _____
 - (a) 0.39 0.77 mm (b) 0.39 0.77 µm (c) 0.39 0.77 nm (d) 0.39 0.77 cm
- j Sum of these is unity
 - (a) Reflectivity (b) Reflectivity + Refractivity
 - (c) Reflectivity + Refractivity + Transmitivity (d) Any

PART - B: (Short Answer Questions) 10X2=20 Marks

Q.2. Answer ALL questions

- a What is a line defect (or) a one dimensional defect?
- b What is meant by polymorphism and allotropy?
- c What are point defects? (or) Zero dimensional defects?
- d What is an isomorphous system?
- e Write down the allotropy forms of pure iron.
- f What is meant by eutectic, hypo eutectic, hyper eutectic cast iron?

- g What is TTT diagram?
- h What is Critical Cooling Rate (CCR)?
- i What is a reinforced composite?
- j Why ceramics have a very high hardness and strength?

PART – C: (Long Answer Questions) 4X15=60 Marks

Answer <u>ALL</u> questions

Q.3		
a	Aluminum has FCC structure and its density is 2700kg/m ³ . Calculate the unit cell dimension and	7
	atomic diameter. (A_w of Al =26.98 g/mol).	/
b	Classify bonding in solids and explain briefly.	8
	OR	
c	What is meant by crystal defects? Describe in detail the point, line and surface defects and Burger vector.	7
d	Copper has FCC structure and its atomic radius is 1.273 A, find the lattice parameter and the density of copper.	8
	(i) Atomic weight of copper =63.5gm (ii) Avogadro's number = 6.023*10 ²⁶ atoms/Kilomole.	
Q.4		
a	Explain Phase transformation with a suitable example.	5
b	A binary alloy having 28 wt% of Cu and balance Ag solidifies at 779° C. The solid consists of two phases α & β . Phase α has 8% Cu whereas phase β has 8% Ag at 779° C. At room temperature these are pure Ag and Cu respectively. Sketch the phase diagram. Label all fields & lines. Melting points of Cu and Ag are 1083° C and 960° C respectively. Estimate the amount of α & β in the above alloy at 779° C & at room temperature.	10
	OR	
c	What is allotropy? Explain briefly with cooling curve for iron-allotropy.	7
d	Draw the Bi-Cd alloy phase diagram & explain with proper labeling.	8
Q.5		
a	Explain the concept of plastic deformation by slip and twinning mechanism with neat diagrams. Also write the difference between the two mechanisms.	7
b	Explain about various type of annealing.	8
	OR	
c	What is CRSS? Derive an expression for CRSS.	7
d	Define hardenability. What is common criterion of hardenability of steel and why? Enumerate five	8
	factors effecting hardenability of steel.	
Q.6		
a	Explain the working principle of Ruby Laser with proper diagram.	7
b	Explain fibre optic communication system with a block digram.	8
	OR	
c	The fraction of the nonreflected radiation that is transmitted through 5mm thickness of a transparent material is 0.95. If the thickness is increased to 12 mm what fraction of light will be transmitted?	7
d	What are Optical fibres? And explain the structure and working principle of optical fibre.	8
		_