	0	210	210	210	210	210	
					ion No.	Zamia	
					tion No :	kegis	ļ
B.Tech EI3I103	210	210	210	210	r of Pages : 02	I Nun	ota
	•		Examination		3 rd		
			ERSION DEVI AEIE, EIE, IEE				
			arks : 100	Max			
			3 Hours E : HB892				
, TWO 210	m Part-II and an	EIGHT from P		-	estion No.1 (Par	swer	An
	J	alia a4aa w.a	Part-III.	_	Tla a f i		
	KS.	dicate marks.	and margin ir	s in the right	i ne tigu		
(0 × 40)			art- I	0	Chart Araniar T		Q 1
(2 x 10)		e?			y Short Answer T at do you mean by		(I
210	210	210	machine.		ntion the methods o	b)	
210			= : 0		at is residual magn ntion the process o		
			d without load?	ould not be sta	y dc series motor s	e)	
					ntion the role of cor at is the function of	,	
		I load?			v does a dc motor a	Ο,	
	speed				lain why three pha	-	
210	210	210	y are laminated : 210	ure and pole be	y DC machine arma	j) 210	
(6 x 8)	t out of Twolvo)	r Any Eight ou	art- II	aswar Typa O	y Focused-Short		2
(6 X 6)	tout of Twelve)				m the first principle		2
					ntion some specific		
			_	•	w and explain the r hunt machine, con	•	
		is a generator to	tio of its speed a	00 Ω . Find the	field resistance is	•	
210	is approximately	210 transformer is a			otor, line current in eemf per turn of a		
		windings and	the HV and LV	ber of turns i	/. Calculate the nu	•	
	s motor with 800		•		tional area of the co ermine developed		
					ductors wave-conn		
					flux per pole is 25	α/	
210	210 210	1	210	210	at is the starting chronous motor?		
					lain the starting of		
	sformer from the	phase transfor	0V,50Hz, single	rcuit of a 200	ain the equivalent wing test data:	-	
					test: 200V,0.7A,70		
			duction motor a		test: 15V,10A,85V	j)	
	plain the bacic of				mon unicient type	J)	
	olain the basis of	/allable. Explair	duction motor a	or pory pridoc	sification.		

210		210	210	210	210	210	210	210			
210	Q3	210	$\begin{array}{c} \textbf{Part-III} \\ \textbf{Only Long Answer Type Questions (Answer Any Two out of Four)} \\ \textbf{A 4-pole, lap connected DC machine has 540 armature conductors. If the flux per pole is 0.03 Wb and runs at 1500 RPM, determine the emf generated. If this machine is driven as a shunt generator with same field flux and speed, calculate the line current if the terminal voltage is 400V. Given the R_{SH}=450\Omega$ and R_A=2 \(\Omega\$								
	Q4		Draw the circuit diag transformer. Also explain by these tests.					(16)			
210	Q5 210 Explain the speed vs. Torque and Speed vs. Armature Current characteristics of a D shunt and series Motor.										
	Q6		A 4 pole DC generate containing 20 conduct Volts if the speed is 10	ors. What shoul	d be the flux pe	r pole required	to induce 375	(16)			
210		210	210	210	210	210	210	210			
210		210	210	210	210	210	210	210			
210		210	210	210	210	210	210	210			
210		210	210	210	210	210	210	210			
210		210	210	210	210	210	210	210			