ELECTR BI ion No.1 (Part-1) whith The figures in the curl of a vector field A. The small increment al coordinates? Scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	from Part-III. he right hand margi Part-I estions (Answer AlI-10 ts in length represente , find the magnitude o	o THEORY IEE any EIGHT from Pa n indicate marks. 0) ed in cylindrical coor	PEI 210 art-II and any T 210 (a rdinates and	5.Tech 131001 210 7WO 210 2 x 10)
Pages : 02 ²¹⁰ 3 rd Semes ELECTR Bi ion No.1 (Part-1) whi ² The figures in ² th hort Answer Type Que curl of a vector field A. re the small increment al coordinates? scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	ROMAGNETIC FIELD RANCH : AEIE, EIE, Max Marks : 100 Time : 3 Hours Q.CODE : HB822 ich is compulsory, a from Part-III. he right hand margin Part-I estions (Answer All-10 ts in length represented , find the magnitude o	o THEORY IEE any EIGHT from Pa n indicate marks. 0) ed in cylindrical coor	PEI 210 art-II and any T 210 (a rdinates and	131001 210 TWO 210
3 rd Semes ELECTR BI ion No.1 (Part-1) whith The figures in the curl of a vector field A. The small increment al coordinates? Scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	ROMAGNETIC FIELD RANCH : AEIE, EIE, Max Marks : 100 Time : 3 Hours Q.CODE : HB822 ich is compulsory, a from Part-III. he right hand margin Part-I estions (Answer All-10 ts in length represented , find the magnitude o	o THEORY IEE any EIGHT from Pa n indicate marks. 0) ed in cylindrical coor	PEI 210 art-II and any T 210 (a rdinates and	131001 210 TWO 210
ELECTR BI ion No.1 (Part-1) whith The figures in the curl of a vector field A. The small increment al coordinates? Scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	ROMAGNETIC FIELD RANCH : AEIE, EIE, Max Marks : 100 Time : 3 Hours Q.CODE : HB822 ich is compulsory, a from Part-III. he right hand margin Part-I estions (Answer All-10 ts in length represented , find the magnitude o	o THEORY IEE any EIGHT from Pa n indicate marks. 0) ed in cylindrical coor	art-II and any T 210 (a	TWO 210
The figures in the figure of the field A. The field a vector field A. The field small increment all coordinates? Scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	from Part-III. he right hand margi Part-I estions (Answer AlI-10 ts in length represente , find the magnitude o	n indicate marks. 0) ed in cylindrical coor	210 (2 rdinates and	210
hort Answer Type Que curl of a vector field A. re the small increment al coordinates? scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	he right hand margin Part-I estions (Answer All-10 ts in length represente , find the magnitude o	0) ed in cylindrical coor	(2 rdinates and	
curl of a vector field A. re the small increment al coordinates? scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	estions (Answer All-10 ts in length represente , find the magnitude o	ed in cylindrical coor	rdinates and	2 x 10)
curl of a vector field A. re the small increment al coordinates? scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	ts in length represente	ed in cylindrical coor	rdinates and	2 x 10)
The small increment al coordinates? scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4	⁰ , find the magnitude o			
scalar field $u = \frac{x^2}{2} + \frac{y_1^3}{3}$ int charges -1nC and 4		of the gradient at the p		
int charges -1nC and 4		5	oint (1,3).	210
tem. ne boundary condition	that is valid at the bo	undary between two	dielectrics 1	
e relationship between	potential gradient and e	electric field.		
o you mean by vector m own the generalized An le plane wave equation Brewester angle?	npere's law and explain	ı each term ₀ in the equ	iation ₂₁₀	210
	Part-II			
points A (x=2, y=3, z= -	Type Questions- (An 1) and B (ρ =4, ø= -50 ⁰ ,			6 x 8)
(ii) B to origin (iii) A to Gradient, Divergence a s the field E=2xyz \hat{a}_x -5(nd Curl. Explain their si		210 ind E at the	210
densities of ρ_{s1} , ρ_{s2} and ensities at the points ively. Find (i) ρ_{s1} , ρ_{s2} and	d ρ_{s3} C/m ² , respectively (5,3,-1), (6,-2,1) and (10, ρ_{s3} (ii) E at the point	y. Given that the resu (4,-7,10) are 0, -2a _z (-8,9,-20).	ulting electric and a _z V/m	
-		•	-	210
nd explain Laplace's eq nt distribution gives rise	uations and Uniquenes to the vector magnetic	ss theorem. c potential A= $x^2y a_x$ +	y²x a _y - 4xyz	210
	or form.	•	-	
theexpression forself-in		form and differential	form with its	
theexpression forself-in idius radius 'b'.	's equations in integral		210	210
i r r	blane sheets of charge densities of ρ_{s1} , ρ_{s2} an ensities at the points vely. Find (i) ρ_{s1} , ρ_{s2} ar nd explain Gauss's law 210 21 nd explain Laplace's ec nt distribution gives rise ² . Calculate the flux thr BiotSavart law in vector theexpression forself-in dius radius 'b'.	blane sheets of charge lie in $z = -2$, $z=0$ and densities of ρ_{s1} , ρ_{s2} and ρ_{s3} C/m ² , respectively ensities at the points (5,3,-1), (6,-2,1) and of vely. Find (i) ρ_{s1} , ρ_{s2} and ρ_{s3} (ii) E at the point and explain Gauss's law in differential form an 210 210 210 $210and explain Laplace's equations and Uniquenessat distribution gives rise to the vector magnetic2. Calculate the flux through the surface defineBiotSavart law in vector form.the expression forself-inductance of co-axiadius radius 'b'.$	blane sheets of charge lie in $z = -2$, $z=0$ and $z=2$ planes with unit densities of ρ_{s1} , ρ_{s2} and ρ_{s3} C/m ² , respectively. Given that the result ensities at the points (5,3,-1), (6,-2,1) and (4,-7,10) are 0, $-2a_z$ vely. Find (i) ρ_{s1} , ρ_{s2} and ρ_{s3} (ii) E at the point (-8,9,-20). Ind explain Gauss's law in differential form and explain what do y 210 210 210 210 $210and explain Laplace's equations and Uniqueness theorem.Int distribution gives rise to the vector magnetic potential A= x2y ax+2. Calculate the flux through the surface defined by z=1, 0 \le x \le 1 anBiotSavart law in vector form.the expression forself-inductance of co-axial cable of inner radius radius 'b'.$	blane sheets of charge lie in $z = -2$, $z=0$ and $z=2$ planes with uniform surface densities of ρ_{s1} , ρ_{s2} and ρ_{s3} C/m ² , respectively. Given that the resulting electric ensities at the points (5,3,-1), (6,-2,1) and (4,-7,10) are 0, $-2a_z$ and a_z V/m vely. Find (i) ρ_{s1} , ρ_{s2} and ρ_{s3} (ii) E at the point (-8,9,-20). Ind explain Gauss's law in differential form and explain what do you mean by 210 210 210 210 210 $210ind explain Laplace's equations and Uniqueness theorem.In distribution gives rise to the vector magnetic potential A= x2y a_x+ y2x a_y - 4xyz^2. Calculate the flux through the surface defined by z=1, 0 ≤ x ≤1 and -1 ≤ y ≤ 4.BiotSavart law in vector form.The expression forself-inductance of co-axial cable of inner radius 'a' anddius radius 'b'.$

210	210	210	210	210	210	210	210
	on	300 MHz plane EM an infinite copper lowing: (a) attenuat	slab. For the tra	insmitted wave in	n the copper slal	o, calculate the	
	`) group velocity uniform plane elec	tromagnetic wav	e travelling in fre	ee space enters	into a loseless	

A uniform plane electromagnetic wave travelling in free space enters into a loseless medium at normal incidence. In the medium its velocity reduces by 50% and in free space sets up a standing wave having a relection coefficient of 0.125. calculate the permeability and permittivity of the medium.

Part-III

			Part-III	
0	Q3	a) b) 210	Only Long Answer Type Questions (Answer Any Two out of Four) Describe in detail the various coordinate systems used in Electromagnetics. What is Laplacian of a scalar? Express Laplacian operator in Cartesian, cylindrical & spherical coordinate system. ²¹⁰ 210 210 210	(10) (6) ₂₁₀
	Q4	a)	State Gauss's law and using Gauss's law find out electric flux density for (i)Infinite line	(10)
		b)	charge (ii) uniformly charged sphere. Explain the method of electrical images and discuss its applications in the study of electromagnetic problems.	(6)
0	Q5	a) 210	State and explain the differential and integral forms of Ampere's circuital law. Verify that within a conductor carrying a current <i>I</i> , the magnetic field strength at a distance <i>r</i>	(10) 210
			from the centre of the wire is given by $H = \frac{Ir}{2\pi R^2}$, where <i>R</i> is the radius of the wire.	
		b)	The current density is constant across the cross section of the conductor. State and explain Lenz's law. What is curl of the induced electric field?	(6)
	Q6	a)	State and derive poynting theorem. What is poynting vector? Obtain expression for the average energy densities for time harmonic fields.	(10)
0		210 b)	Derive the relation between E and H in uniform plane wave propagation.	(6) ²¹⁰

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210	210 210	210
-------------------------	---------	-----