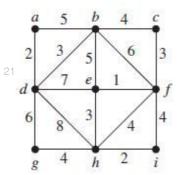

210	210	210	210			210	210	210
						n No :	egistratio	Regi
B.Tech					03	of Pages :	Number	Total Nu
S3I001		040.00	Eveningtion	or Dook	ard Com			
210	210	= 1 0	Examination STRUCTURES CH : CSE arks : 100	CRETE S		210	210	210
			3 Hours	Time :				
тwo	art-II and any	EIGHT from Pa	E : HB820 pulsory, any		(Part-1) w	stion No.1	wer Que	Answe
	-	010	Part-III.	from		010		
210	210	dicate marks.	and margin ir	e right h	figures in	² The	210	210
			art-l					
(2 x 10)	s of logical	it by using rule	nswer All-10)	•	••		-	ຊ1 a)
	s or logical	it by using full	, .		.,	alences.	equiv	u)
	0	ation and to and	s always even. 7 to 7, lo this fu					b)
210	f 210	ction one-to-one				s function o	ls th	C) 210
	ative integer	e n is a non-neg		computing	algorithm	a recursive	d) Write	d)
			ence 2, 3, 4, 5, .			is an expor e a generati		e)
		h a₀ = 2.	n a _n = 3 a _(n-1) , wi	ce relation	of the recur	the solution	f) Find	f)
	+ 5 and <i>f</i> (1)	f(n) = 2 f(n/3)	-conquer relation	divide-and		ose that <i>f</i> (n /rite value o		g)
210	210	ree vertices?	are there with t		omorphic s	many non-is	h) How	h) 210
						examples c ider the gra	Diaw	i)
					aphs have	h of these g	Whic	
		of degree 3.	/mmetric group	S_3 , the sy		h have an E all the prope		j)
		0	5 1	, j	5 1			
0.4.0	0/0		art-ll					
(6 x 8) ²¹⁰		r Any Eight out $(\forall x)P(x) \rightarrow (\forall x)$						Q2 ²¹⁰ a)
			, ,-	cess.	n derivation	each step i	show	u)
	<u>:</u> 1.) − <i>F</i> (<i>n</i>) for all <i>n</i> ≥	+ 4) = 3 <i>F</i> (<i>n</i> + 2 closure of a rel					b) c)
			e closure of the		•		-	0)
		the set S = {a, b divides <i>y</i> " on {1,						d)
210	2, 3, 0, 12, 210	210 210	210	Consider	cept of pos	210		210
			f this relation.				i) ii	
			essors of 6.		all the prede all the imme		ii	
	1		e above relation				iv a) Dufin	-)
	iting function	mine the genera	is even and a _{r=}					e)
		-2				nathematica	_	f)
		0.15	0.15					
210	210	210	210		+	+ 2^2 + 2^{210} Il nonnegativ	²¹⁰ 1 + 2	210


210	210	210	210	210	210	210	210

- **g)** Using generating functions to derive an expression for finding the number of ways to select *r* objects of *n* different kinds if at least one object of each kind is must selected.
- h) Let *R* be the relation on the set of real numbers such that xRy if and only if *x* and *y* are real numbers that differ by less than 1, that is, |x y| < 1. Show that *R* is not an equivalence relation. Also prove by taking a suitable counter example. 210
- i) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for all sets A, B, and C by using set identities and by using membership table.
- **j)** Using Dijkstra's algorithm, Find the length of a shortest path between *a* and *z* in the given weighted graph below:

- 210 Clearly specify each intermediate steps in derivation of final tree.0
- **k)** Using Prim's algorithm and Kruskal's algorithm to find a minimum spanning tree for the given weighted graph and draw the final tree in each case with clearly mentioning each intermediate step:

210

210

- 010
- If Z₅ = {0, 1, 2, 3, 4} and Addition modulo 5 is defined as +5, on Z₅ by rule x +5 y = r, where r is theoremainder whenox + y is divided by 5, means that, x +5 y = (x + y) mod 5 and Multiplication modulo 5 is defined as x •5 y = (x y) mod 5. Then prove that, [Z₅, +5] is a commutative group, and [Z₅, •5] is a commutative monoid, where Z is set of integers.

Part-III

(4.0) 010	out of Four)			
(16) ²¹⁰	210 210	Q3 210	210 Q3	210
	+ A ∩ B ∩ C .			
	ole of inclusion-exclusion.			
(16)	forward difference, backward		Q4	
210	hat: $a^{2\pm0}$ 3r-2, b = (2/r) $^{2+0}$ 7, c = ren below by justifying each.	210	:10	210
	ric function. nat: a ² ⊒ ⁰ 3r-2, b = (2/r) ^{2,1} 7, c =	210	-	210

010

210	210	210	210	210	210	210	210
210 210	210	 (a) Does a dominate b Does a dominate c as Does b dominate a as Does b dominate c as Does c dominate a as Does c dominate b as (b) Does a + b dominate Does a + b dominate a (c) Does ab dominate ab a Does a dominate ab a Does c dominate ab a Does c dominate ab a 	ymptotically? ymptotically? ymptotically? ymptotically? ymptotically? te a asymptotically? a asymptotically? symptotically? symptotically? b asymptotically?	210	210	210	210
210	Q5 210	(e) Does the accumula Discuss the terms: li Algebra. Show that the Use K-map method to	teral, minterm, r e Boolean operato	naxterm, SOP, or NOR, i.e., {↓ n-of-product exp	POS with respe } is functionally c ression:		(16)
210	Q6	Write notes on ANY	тwo :		x y z =10		(8×2)
	a) b)	Pigeonhole principle a Integral domains and	Fields	5			
210	C) 210	Traveling sales persor 210	n' s problem 210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210