10		210	210	210	210	210	210	210	
	I	Reais	stration No :						
		•							
	Tota	al Nu	mber of Pages : 02	2				B.Tech E31001	
10		210	210	Max Tim		ULATION	210	210	
	Ar	iswe	r Question No.1 (P	art-1) which is c	ompulsory, a	iny EIGHT from P	Part-II and any	TWO	
10		210	² The fig	040	om Part-III. t hand margi	n indicate marks.	210	210	
	Q1	c)	Only Short Answe))		(2 x 10)	
10		a) b) c) d) e) f) b) h) i)	Define Dalton's law Write down any two Differentiate betwee Convert 1 btu to Ca What is limiting and Explain the different Name any four sepa Define Drying and c Brief the difference	assumptions of Cl en wet bulb and dry lories and Joules. excess reactant? ce between the rec aration processes. crystallization operation	ausius-Clapeyro bulb temperatu 210 ycle and bypase ition.	210 s stream	210	210	
10	Q2	j) ²¹⁰ a) b)	Differentiate between heat of formation and heat of reaction. Part-II						
10		c) 210 d)	of the gas mixture is 10 kg of C H4 is bu combustion if air is a 1000 kg of Na2CC cooling. During its p concentrated solution would be produced	rnt with 10% exces at 30°C and 1.3 atr 03 solution contair process 15% of H20 on Na2CO310.H20 if the solubility of N	n pressure? hing 25% Na20 O present in the O crystallizes o la2CO3 is 21.5	210 CO3 is subjected t solution is evapora ut. Calculate how g per 100 g of H2O	210 o evaporative ated. From the much crystals	210	
10		e) f) ²¹⁰ g) h)	Explain the various isothermal & adiaba The Orsat analysis O2:4.2% and N2:8 place, (a) Calculate Define(i) Relative he 200 kg of pure sulpl sulphur to sulphur of sulphur dioxide. The	tic process. of the flue gases 4.4% (mole %). A the % excess air, a umidity (ii) Absolute hur is burnt with 25 dioxide, 4.5% of su	from a boiler h Assuming that and (b) find the humidity % air in excess Ilphur is oxides	ouse chimney give complete combusti C: H ratio in the fue of that required to to sulphur trioxide	s CO2:11.4%, on has∍taken I. convert all the and 95.5% to	210	
10		i) 210	of the gas leaving the A mixture of NaCl a obtained. If the orig the sample.	ne burner. and KCI was treate	d with H2SO4 a	and 1.2 kg of mixed	sulphate was	210	

210		210	210	210	210	210	210	210	
210		j) k) J) 210	Octane is burnt wit ratio by volume Moist air contains 0 101.3 kPa. Calculat A body weights 1 k gravity of the liquid?).0109 kg water vap e (i) the partial pres g in air, 0.90 kg in v	oor per cubic r sure of water v	neter of the mixture apor (ii) the relative	e at 300K and e saturation	210	
210	Q3	210	Only Long Answer Pure sulphur is burr and 100 kPa. The g SO3 free volume b Calculate the (i) Fra the amount required The volume of burn	nt in a burner at the gases from the bur basis. The gases action of sulphur bu d to oxidize sulphur	rate of 0.3 kg/s ner contain 16 leave the burn rnt into SO3 (ii	s. fresh dry air is su 5.5%SO2, 3% O2 a ner at 800°C and) The percentage e	nd rest N2 on 101.325 kPa. xcess air over	(16) 210	
	Q4		The heat capacity o $3T - 14.298 \times 10-6$ required to heat 1 k the heat apacity in k heat capacity in Btu	T 2 where Cp KJ/k g of CO2 from 300 ccal/kmol°C and tem /lb mol °F and temp	Kmol K and T K to 1000K? perature in °C	is in Kelvin. (i) How (ii) Obtain the relat ; (iii) Obtain the rela	/ much heat is on expressing tionship giving	(16) 210	
210	Q5	210	5000 kg of Kcl are present in a saturated solution at 80°C. The solution is cooled to 20°C in an open tank. The solubilities of Kcl at 80°C and 20°C are 55 and 35 parts per 100 parts of water. i) Assuming water equal to 3% by weight of solution is lost by evaporation; calculate the weight of crystal obtained. ii) Calculate the yield of crystals neglecting loss of water by evaporation; Kcl crystallizes without ant water of crystals.						
210	Q6	210	For the reaction $A \rightarrow B$, the process flow diagram is shown in following figure. The fresh feed of A contains 0.6% of inerts by volume. Sixty five percentage conversion of A per pass is obtained. The concentration of inerts going into the reactor at point 1 must be held at 2.5% by volume. All streams are ideal gases and the process is steady-state (i) How many moles need to be recycled per mole of total feed to the reactor at point 1? (ii) How many moles to be purged?						
210		210	(iii) What is the over		Г	EPARATOR	→	210	
210		210				•	→	210	
210		210	210	210	210	210	210	210	

210 210 210 210 210 210 210 210

210