	210	210	210	210	210	210	2
	Regi	stration No :					
Tot	al Nu	mber of Pages : 02	2				B.Tech
	210	210	BRA Max Tim	ck Examination MATHEMATIC NCH : MECH Marks : 100 Ne : 3 Hours DDE : HB948		210 PME	3D001
Aı	nswe 210	r Question No.1 (P 210 The fig	art-1) which is o	compulsory, any om Part-III.	210	210	TWO
			_	Part- I			
Q1	a)	Only Short Answer What are Paraboli	c and hyperbolic	equations? Give	one example i		(2 x 10
	b) 210	Find the singular p	points of $f(z) = \frac{z}{z^2}$	$\frac{+1}{-z}$ 210	210	210	2
	C)	Define Cauchy inte	egral formula				
	d) e)	Solve the partial di Check whether the					
	f)	Determine the pro fair coins.	bability that at le	east one head a			
	g)	A book has two m page open at rand			what is the prob	pability that a	
	210 h) i) j)	Define critical regio Express Laplace E Find the mean and	on. Equation in Carte	sian co-ordinates	210 S.	210	2
				Part- II			
Q2	a)	Only Focused-Sho Derive Necessary		uestions- (Ansv		ut of Twelve)	(6 x 8)
	b) 0				210	210	7
	C)	Integrate the func with vertices $\pm 2 ar$	(2)	$\frac{hz}{2}$, where C is	the boundary o	of the square	
	d)	Solve: $x(r+2xs+$		Monae's method			
	e)	Find the temperate	, I ,	•		onstant cross	
	210	section of area 1 1.04 cal/cm ¹⁰ spec whose end are kep	ific heat 0.056	cal/gm) ² that is p	perfectly ⁰ insulat	•	
	f)	In a sample of 9 c mean was 98.5. In 102.7. Test wheth	bservations, the	sum of squared of 10 observatio	l deviation of ite ns, the value v	vas found by	
	g)	Find a harmonic	conjugate of gi	-	-		
		analytic function f(

		h)	Solve: $(D^2 + DD' + D' - 1)z = sin(x + 2y) + x^2 + y^2$				
210		210 i)	here $D = \frac{\partial}{\partial x_{10}}$ and $D' = \frac{\partial}{\partial y}$. 210 210 210 210 210 210 210	210			
210		j) k) 210	(i) $f(z) = \frac{\cos z + \sin z}{z^2}$ (ii) $f(z) = e^{\frac{1}{z}}$. Transform the equation $u_{xx} - 4u_{xy} + 3u_{yy} = 0$ to normal form using suitable transform and solve it. A function defined as follows : $ \begin{cases} 210 & 210 & 210 & 210 \\ 4x(9-x^2) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	210			
210)) 210	 (i) Show that it is a density function. (ii) Find the expectation and variance. (ii) Find the distribution function. Assume that on average one telephone number out of ten called between 10A.M to 11 A.M. on week is busy. If five telephone numbers are randomly selected find the probability that (i) Not more than two (ii) At least two of them will be busy. 	210			
			Part-III Only Long Answer Type Questions (Answer Any Two out of Four)				
210	Q3	a) ⁰	Find all Taylor and Laurent Series of $f(z) \stackrel{210}{=} \frac{-2z+3}{z^2-3z+2}$ with center zero. ²¹⁰	(8) ²¹⁰			
			Evaluate counter clockwise $\oint_{c} \frac{30z^2 - 23z + 5}{(2z - 1)^2 \cdot (3z - 1)} dz \qquad C : z = 1$	(8)			
	Q4	a)	Show that Normal distribution is the limiting case of binomial distribution under	(8)			
210		210		210			
		b)	(ii) Neither p (probability of success) nor q(probability of failure) is very small. Suppose an item is inspected at the end of each day to see whether it is still functioning property. Let p be the probability of failure during each day. Find the maximum number of days of inspection for first failure.	(8)			
210	Q5	a) b) ⁰	Evaluate the integral: $\int_{0}^{2\pi} \frac{1+\sin\theta \ d\theta}{3+\cos\theta}$. State and prove D-Alembert's solutions of wave equation. ²¹⁰ 210	(8) (8) ²¹⁰			
	Q6		By using Least square method for the following data, find out : a) Regression line of y on x b) Regression line of x on y				
			c) Fit a parabola $y = ax^2 + bx + c$				
210		210	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210			