RN19001854

Tota	Registration No: l Number of Pages : 2	B.TECH 3 rd Si CHPC3030 CHI			MINA						B.TECH
	Time : 3 Hours		Ch	nemical l swer AL	Engine L Que	ering stions			Ν	Maximum :	100 Marks
		<u>PART – A:</u>	(Multipl	<u>e Choic</u>	e Que	stions)) 10 x	2=20	<u>Mark</u>		
Q.1	Answer <u>All</u> Questions	3									
a	Thermodynamic pro properties. i. absolute ii. partial	operties depen	dent on	quant	ity of	mate	erial	are c	alled		[CO1][PO1]
	iii. extensive										
b	iv. intensive For incompressible f i. < 0 ii. 0	luids, the value	e of isoth	ermal c	ompre	essibil	ity is		_·		[CO1][PO2]
0	iii. 10 iv. None of t		tia than								[CO1][DO1]
с	If a process is reverse i. $dQ^{t} = T$ ii. $dV^{t} = 1$ iii. $dH^{t} = \infty$ iv. $dS^{t} = 0$		uc, then	•							[CO1][PO1]
d	Activity coefficients i. vapour ph	nase composition ase composition	on								[CO2][PO1]
e	iv. liquid der Calculate {x _i } and T i. BUBL P ii. DEW P	nsity	d P is rep	oresenti	ng the	calcu	latior	ns for:			[CO2][PO1]
f	iii. BUBL T iv. DEW T Duhem's theorem is i. closed sys	applicable to: stem at equilibr	rium								[CO2][PO2]
	ii. open systiii. both i andiv. none of th	em at equilibrit l ii nese	um								
g	V, U, H, S, G are exa i. thermal ii. pure spec iii. partial			properti	ies.						[CO3][PO1]
h	iv. solution Fugacity is applicabl	e to:									[CO3][PO2]

RN19001854

- i. solid
- ii. ideal gas
- iii. real fluid
- iv. viscous fluid

i The reaction proceeds to such an extent that the change in mole number of each reactant and [CO4][PO1] product is equal to its stoichiometric number. This statement is valid when _____.

- i. $\Delta \varepsilon = 0$
- ii. $\Delta \varepsilon = 1$
- iii. $\Delta \epsilon < 0$
- iv. $\Delta \varepsilon > 1$

j When standard reaction is endothermic, an increase in T results in _____ in K. [CO4][PO1]

- i. decrease
- ii. no change
- iii. increase
- iv. none of these

PART – B: (Short Answer Questions) 10X2=20 Marks

Q.2. Answer <u>ALL</u> questions

	Q:2. Answei <u>ALL</u> questions	
а	Is it possible to cool your kitchen by opening the door of the electrically powered refrigerator	[CO1][PO2]
	? Justify your answer.	
b	What are volume expansivity and isothermal compressibility ?	[CO1][PO1]
c	What do you understand by isentropic process ?	[CO1][PO2]
d	State Duhem's theorem.	[CO2][PO2]
e	Mention the two assumptions required for Raoult's law.	[CO2][PO2]
f	What is equilibrium ratio ?	[CO2][PO1]
g	Define chemical potential.	[CO3][PO1]
h	Define activity coefficient.	[CO3][PO2]
i	What is effect of temperature on the equilibrium constant ?	[CO4][PO1]
j	Explain the Phase rule for reacting systems.	[CO4][PO1]

PART – C: (Long Answer Questions) 4X15=60 Marks

Answer <u>ALL questions</u>

Q.3

a	A tank containing 20 kg water at 293.15 K is fitted with a stirrer that delivers work to the water at the rate of 0.25 kW. How long does it take for the temperature of the water to rise to 303.15 K if no heat is lost from the water ? $C_{P \text{ water}} = 4.18 \text{ kJ/kg.}^{0}C$.	3	[CO1][PO1]
b	1 mole of air (assumed to be ideal gas), initially at 423.15 K and 8 bar, undergoes reversible changes: expands isothermally to a pressure such that when it is cooled at constant volume to 323.15 K its final pressure is 3 bar. $C_P = 7R/2$ and $C_V = 5R/2$. Calculate: W, Q, ΔU , and ΔH .	-	
		12	[CO1][PO2]
	OR		
с	Express the volume expansivity and the isothermal compressibility as functions of density and its partial derivatives. For water at 323 15 K and 1 her. $k = 44.18 \times 10^{-10}$		

density and its partial derivatives. For water at 323.15 K and 1 bar, $k = 44.18 \times 10^{-6}$ /bar. To what pressure must water be compressed at 323.15 K to change its density by 1 % ? Assume that k is independent of P.

5 [CO1][PO2]

RN19001854

[CO1][PO2]

A vessel of 0.06 m³ volume contains an ideal gas ($C_V = 5R/2$) at 500 K and 1 bar. If 15 kJ heat is transferred to the gas, determine its entropy change. Also, if the vessel is fitted with a stirrer that is rotated by a shaft so that 15 kJ work is done on the gas, what is the entropy change of the gas if the process is adiabatic ? What is ΔS_{total} ? What is the irreversible feature of the process ?

Q.4

d

~ •	•		
a	Compared to carbon dioxide, air is inexpensive and nontoxic. But air is not used for making soda water and champagne effervescent. Using Henry's law to explain this.	3	[CO2][PO2]
b	Assuming Raoult's law to be valid, prepare a P-x-y diagram for a temperature of 363.15 K for a system of benzene(1) and ethylbenzene(2). The Antoine coefficients are:		
	$A_1 = 13.7819, B_1 = 2726.81, C_1 = -55.578, A_2 = 13.9726, B_2 = 3259.93, and C_2 = -60.850.$	12	[CO2][PO2]
c	Prove that an equilibrium liquid/vapour system described by Raoult's law cannot exhibit an azeotrope.	3	[CO2][PO1]
d	Discuss in detail the dewpoint and bubblepoint calculations with Raoult's law.	12	[CO2][PO2]
Q.	5		
a	Show that: The partial molar mass of a species in solution is equal to its molar mass.	5	[CO3][PO3]
b	Derive the partial property equations for binary solutions.	10	[CO3][PO3]
	OR		
c	Discuss in detail the ideal-solution model and the Lewis/Randall rule.	15	[CO3][PO4]
Q.	5		
a	Write about multi-reaction stoichiometry.	7	[CO4][PO1]
b	Discuss the effect of temperature on the equilibrium constant.	8	[CO4][PO1]
	OR		
c	Write briefly about fuel cells with a neat diagram.	8	[CO4][PO1]
d	A system formed initially of 2 mol CO_2 , 5 mol H_2 , and 1 mol CO undergoes the reactions:		
	$\begin{array}{c} \text{CO}_2 (g) + 3 \text{ H}_2 (g) \rightarrow \text{CH}_3 \text{OH} (g) + \text{H}_2 \text{O} (g) \\ \text{CO}_2 (g) + \text{H}_2 (g) \rightarrow \text{CO} (g) + \text{H}_2 \text{O} (g) \end{array}$		
	Develop expressions for the mole fractions of the reacting species as functions of the reaction coordinates for the two reactions.	7	[CO4][PO1]