												BD17001006
- angue	NT		[1	[[1	1		
Registrati	on No:											
Total Number	of Pages : 02					AR-17						B.TECH
Time: 3 Hours			BSBS	1021-1	AMIN. ENGIÌ	ATION NEERI	NG PI	HYSIC	CS		2019	Max Marks : 100
				D	ART –	٨	-				(10	x 1 = 10 MARKS)
Answer all qu	estions.			ΓΡ	4K1 –	A					(10	x = 10 MARKS)
a. b.	Restoring force The superpositi	of an c on is s	scillat aid to	tor is n be co	naximu herent	ım at _ if			p	ositior remair	n? ns cons	stant between
c. d.	them? The relation bet The fundamenta											?
e.	Which of the fo	llowing	g is the	e volun	ne of t	he prii	nitive	unit ce	ell.			
	(i) a.(b x c)	(ii)	b .(c x	xa)	(iii) c.	(axb)). (iv)	none	of the	se	
f.	Gauss divergen	ice theo	orem c	onvert	s a							
	(i) Line integral	to volu	ime in	tegral	(iii) Su	rface ir	ntegral	l to vol	ume ir	ntegral	
	(ii) Line integral	l to sur	face ir	ntegral	(iv) Vo	lume i	ntegra	l to lin	e inte	gral	
g.	The SI unit of e	lectric	displa	cement	t is							
h.	The divergence	of a po	osition	vector	is			_?.				
	(i) 0	(ii) 1		(iii) 2		(iv) 3					
i.	The minimum e	nergy	require	ed for p	photoe	lectric	effect	is call	ed			
j.	The rest mass of	f a pho	ton is		·							
				RT-B						(1	5 x 2 =	= 30 MARKS)
	teen questions fro When a load of				ng, it s	tretche	es 0.4 c	cm. If	the loa	ad is re	placed	by another 5
	Kg. then what w	vill be t	he nev	v time	period	of the	oscilla	ator?				
2.	Three waves of	ampli	tudes	1cm, 2	2 cm,	3 cm	and sa	me fre	equenc	y supe	erpose	coherently to
	produce a result	ant wa	ve. Fir	nd the r	esulta	nt inte	nsity?					
3.	Find the ratio of	the fri	nge w	idths w	hen th	ne Bi p	rism e	xperin	nent is	set by	two w	avelengths of
	light 50000A ⁰ and	nd 600	$0A^0?$									
4.	The first focal l	ength o	of a zo	one pla	te is 2	.4 cm.	for wa	welen	gth 50	$00A^{0}$.	Find th	e radii of the
	1 st and 2 nd transp	parent 2	zones.									
5.	In an optical fi	ber, th	e core	e mater	rial ha	s refra	active	index	1.6 ai	nd refr	active	index of the
	cladding materia	al is 1.3	8. Calc	ulate t	he acc	eptanc	e angle	e?				

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

Â

6. Differentiate between crystalline and amorphous solid with examples?

What is the Numerical Aperture of an optical fiber cable with a cladding index of 1.378 and core index of 1.546?

- 8. Calculate the spacing between $(1 \ 0 \ 0)$ and $(1 \ 1 \ 1)$ planes of a cubic system of lattice parameter $2A^{0}$?
- 9. Find the Miller indices of a crystal plane having the intercepts 2a,3b and 4c.
- 10. Explain BCS theory of superconductivity
- 11. Find the magnitude of 'b' of a solenoidal vector $\vec{A} = 2\hat{i} x^2y + 3\hat{j} y^2z + 4\hat{k} z^2x$ at (1, 2, 3).
- 12. Evaluate curl of the vector field, $\overrightarrow{B} = 2\hat{\iota} xy + 4\hat{\jmath} yz + 5\hat{k} zx$
- 13. State Ampere's circuital law and obtain its differential form.
- 14. State Faraday's laws of electromagnetic induction.
- 15. Show that electromagnetic wave travels with the speed of light in free space.
- 16. A point source emits light with power 250 W. Find the average value of the Poynting vector at a distance of 2m from the source.
- 17. State Maxwell's equation in electromagnetism which connects magnetic field vector with electric displacement vector.
- 18. State Heisenberg's uncertainty relation.
- 19. Write the characteristics of a wave function in quantum mechanics.
- 20. Find the de Broglie wavelength of a particle of mass 40 g, moving with speed 1km/s.

 $\frac{PART-C}{Section-I} \qquad (6 \text{ x } 5 = 30 \text{ MARKS})$

- 1. Graphically explain the three types of damped motions with their conditions of occurrence.
- 2. Distinguish between longitudinal and transverse waves. Find the velocity of the longitudinal wave in a medium of density $\rho = 5 \times 10^3 \text{gm/cc}$ and Bulk modulus $B = 12 \times 10^{11} \text{dyne/cm}^2$?
- 3. Define (i) Pumping (ii) Population inversion (iii) Resonator cavity.
- 4. Compare diamagnetic, paramagnetic and Ferromagnetic materials.
- 5. What do you mean by Miller indices? Write down the steps to find out Miller indices.
- 6. Write the Gauss law in electrostatics. Derive an expression for the electric field at a distance 'r' from a point charge 'q' using Gauss law.
- 7. State Gauss divergence theorem. Using Gauss divergence theorem show that the volume of a sphere is $4/3 \pi r^3$.
- 8. Write short notes on CNT with two applications.
 - a. What is blackbody radiation? Mention its general characteristics. State Plank's formula for blackbody radiation.
 - b. Normalize the wave function $\psi(x, t) = 2 \sin x, 0 \le x \le 1$.

BD17001006

<u>Sec</u> 1.	tion – IIAnswer any Two questions $(2 \times 15 = 3)$ a. Discuss with a neat diagram that how interference fringes are produced in Newton's Ring F	30 MARKS) Experiment				
	and derive the expression for the diameters of the dark and bright rings? [10]					
b. Discuss the construction of zone plate? Show that a zone plate is similar to a convex lens?						
2.	a. Discuss the construction, working and applications of Ruby solid state laser?	[10]				
	b. Mention the properties and application of Superconductors.					
3.	a. Differentiate between TYPE-I and TYPE-II superconductor. Determine the critical current	ent density				
	for 1mm diameter wire of aluminum at 1.0K, where, $T_c=1.196K$, $H_0 = 7.9X10^3$ A/m.	[10]				
	b. Discuss about the different types of magnetic materials? Give their examples and applicati	ons?[5]				
4.	a. Evaluate Curl Grad f, where f is a scalar field?	[5]				
	b. Using Schrodinger's equation, discuss the case of a free particle in one dimensional potenti	al				
	Well. Find its energy Eigen values of the excited states?	[10]				

==0==