

GIET UNIVERSITY, GUNUPUR – 765022

RD19BTECH002

]	Registration No:						
Total I	Total Number of Pages : 3 AR-19						
	B.TECH		EXAMINATI				2019
		Code- BBSI	BS1010, Engine	ering Ma	thematic		
	Time : 3 Hours		Anoman ALL	Quastiana		Maximum	: 70 Marks
		The figures in	Answer ALL hthe right hand	-	indicate r	narks	
			Multiple Choice Q				
Q.1	. Answer <u>All</u> Questi				10 11 10		
а	If $u = x^y$, then $\frac{\partial u}{\partial u}$	=					[CO1] [PO1]
	If $u = x^y$, then $\frac{\partial u}{\partial y}$: (a) $y.x^{y-1}$	(b) $x.y^{x-1}$	(c) x ^y .log x	(d)) None		
1			1 / 1				
b	A function $f(x,y) = x^2 + 0$ r>0	vill have a maximum (b) $rt-s^2 > 0$, $r<0$	n value at a point (c) $rt-s^2 < 0$ r	(a,b) 1f >0 (d) l	None		[CO1] [PO1]
	(u) it 5 > 0, 1>0	(0) 11 5 > 0,1 (0		(u) 1	tone		
с	Integrating factor	for $\frac{dy}{dy} + Py = Q$, w	here P,Q are func	tions of x,	is		[CO2] [PO1]
	(a) $e^{\int Q dx}$	for $\frac{dy}{dx} + Py = Q$, w (b) $e^{\int P dy}$	(c) $e^{\int P dx}$	(d)	None		
	() 0			(0)	1,0110		
d	-	form $M dx + N dy =$	= 0 where M, N ar	e functions	s of x and y	is exact if and	[CO2] [PO1]
	only if	aM aN	am an				
	(a) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	(b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$	(c) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$	(d) N	lone		
e	$\frac{dy}{dx} = \frac{-(3x^2y+y)}{(x^3+x)}$	ia					[CO2] [PO1]
		mogeneous equation variables separable					
		n-homogeneous equ					
	(d) None	C 1					
f	Fourier series of an	n odd periodic funct					[CO3] [PO1]
	(a) cosine terms	(b) sine terms	(c) both cosine an			None	
g	By the half range l interval of the type		inction we mean a	in expansio	on of the fu	nction in an	[CO3] [PO1]
	(a) $(0, L)$	(b) (-L, L)	(c) (-L, 2L)	((d) None		
h		sistency of a system			,	= B is	[CO4] [PO1]
	(a) $\rho(A) < \rho(A:B)$	(b) $\rho(A) > \rho(A:B)$) (c) $\rho(A) = \rho(A)$:B) (d)	None		
i	If λ is an eigen val	ue of a non singular	matrix A. then 1/	λ is an eig	gen value o	f	[CO4] [PO1]
	(a) A^{T}	(b) A ⁻¹	(c) A^2	-	None		[][]
j	Cayley-Hamilton	heorem states that e	very square matri	x satisfies	its own		[CO4] [PO1]
	(a) Normal form	(b) Echelon for	m (c) Character	istic equat	ion (d) N	one	

RD19BTECH002

[CO2] [PO2]

PART – B: (Short Answer Questions) 10x2=20 Marks

Q.2. Answer ALL questions

a Determine
$$\lim_{x \to 1, y \to 2} \frac{2x^2 y}{x^2 + y^2 + 1}$$
 [CO1] [PO2]

b Determine whether the function $u(x, y) = \frac{x + y}{\sqrt{x} + \sqrt{y}}$ is homogeneous or not. If yes, what is its [CO1] [PO2]

degree?

c Determine dz/dt if $z = u^2 + v^2$ where $u = a t^2$ and v = 2 a t. [CO1] [PO2]

d Solve the linear differential equation of first order $\frac{dy}{dx} + y = x$. [CO2] [PO2]

e Determine the complimentary function for the equation
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = \sin x$$
. [CO2] [PO2]
f (CO2] [PO2]

- ^f Determine the particular integral for $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{2x}$. [CO2] [PO2] g Determine the general coefficient of the sine terms (b_n) in the Fourier series of the function [CO3] [PO2]
- g Determine the general coefficient of the sine terms (b_n) in the Fourier series of the function [CO3] [PO2] $f(x) = x \text{ in } (-\pi, \pi).$
- h Write general form of Fourier series of an even periodic function f(x) of period 2c. [CO3] [PO1]

i Determine the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$

j Test whether the matrix
$$P = \frac{1}{3} \begin{bmatrix} -2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$
 is orthogonal. [CO4] [PO2]

PART – C: (Long Answer Questions) 4x10=40 Marks

Answer ALL questions

Q.3

a If
$$u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u.$ [CO1] [PO2]
(5+5)

b Discuss the maxima and minima of the function $u = x^3 + y^3 - 3xy$ [CO1] [PO2]

- OR
- cDetermine the points at which the function $f(x, y) = 2(x^2 y^2) x^4 + y^4$ assumes[CO1] [PO2]maximum or minimum values.Apply Leibnitz rule for differentiation under the integral sign to evaluate(5+5)[CO1] [PO2]

$$\int_0^1 \frac{x^a - 1}{\log_e x} dx, a \ge 0.$$

Q.4

- a Solve $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0.$ [CO2] [PO2] (5+5)
- b When a resistance R Ohms is connected in series with an inductance L Henries

GIET UNIVERSITY, GUNUPUR – 765022

RD19BTECH002

and an e.m.f. E volts, the current *i* amperes at time t is given by $L\frac{di}{dt} + Ri = E$. If E

= 10 volts and i = 0 when t = 0, find *i* as a function of t.

c Determine the complete solution of
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \cos x$$
. [CO2] [PO2]
(5+5)

d Solve
$$\frac{d^2y}{dx^2} + y = \tan x$$
 by the method of variation of parameters.

a	Expand $f(x) = x - x^2$ as a Fourier series in the interval $(-\pi,\pi)$.	(5 +5)	[CO3] [PO2]
b	Develop $f(x) = \{ \frac{1+2x/\pi, -\pi \le x \le 0}{1-2x/\pi, 0 \le x \le \pi} $ in a Fourier series in $(-\pi,\pi)$.		[CO3] [PO2]

OR

с	Expand $f(x) = c$, (where c is a constant) in a half range sine series in the interval	(5 + 5)	[CO3] [PO2]
	$(0,\pi)$.	(5+5)	[CO3] [PO2]
d	Expand $f(x) = x^2$, as a half-range cosine series in the interval (0,2).		[CO3] [FO2]

Q.6

а	Apply Gauss Elimination method to solve the system	of e	quat	ions		[CO4] [PO2]
	4y + 3z = 13, x - $2y + z = 3$, $3x + 5y = 11$.					
	[1	0	3		(4+6)	[CO4] [PO2]
h				11 0 1.		

b Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and hence find its inverse.

OR

c	Reduce the quadratic form $Q=6x^2+3y^2+3z^2-4xy+4zx-2yz$ to its canonical form		[CO4] [PO2]
	and specify the matrix of transformation.	(7+3)	
d	Verify whether the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is Unitary.	(* -)	[CO4] [PO2]

==0==