	2	10	210	210)	210		210	210	210
	Reg	gist	tration No :							
T	Γotal N	Nun	∟ nber of Pages : 0	2		<u> </u>				B.Tech
	2	10	210	1 st Semes	ter Bacl	k Examina	ation 2	019-20	PA	P1A102
	BR	AN	CH : AEIE, AERO RICAL, ENV, ETC), AUTO, B	APPLIE IOMED, IT, MAN ME, PE, Max N Time	ED PHYSI BIOTECH NUFAC, M PLASTIC Marks: 10 : 3 Hours	CS H, CHE IANUT E, PT, T O S	M, CIVIL, C ECH, MECI	SE, ECE, EEE,	EIE,
	Ansv	ver	Question No.1 (I	Part-1) whi	ch is co			EIGHT from	Part-II and any	TWO 210
			The fi	gures in th	_	n Part-III. hand mar	gin inc	licate mark	S.	
						Part-l				
C	Q 1		Only Short Answer				-10)			(2 x 10)
	a b	-	State D. Alembert's Graphically show to critically damped m	he displacer	ment-time	e curves fo	or under	-damped, ov	/er-damped and	210
	d e f)))	What do you mean Distinguish betwee Write down Maxwe What do you mean On which principle	by diffraction conduction conductions!I's electromate by population does fibre o	n current agnetic e on inversi ptics worl	and displace quations in ion?	cement	current.		
	h i j		Write down SI unit What is pair produc At e =, the Com	ction? Write	down one			210	210	210
C	Q 2		Only Focused-Sh	ort Answer		Part-II	∆nswer	· Any Fight	out of Twelve)	(6 x 8)
	a		What are general Lagrangian $L = \frac{mv^2}{2}$	alized co-o	rdinates?	Obtain	equa	tion of mo	tion for given	(0 X 0)
	b)	Two pendulums of 0.98m. The two m dyne/cm. Determin	f mass 50g lasses are	each are	e suspende by a massl	ed by m ess spr	iassless rigio	constant:k=150	210
	c d	•	Write down the sim Write about Michel light using it.	ilarities and	difference	es betweer	n a zone	plane and o	convex lens.	
	е		Prove that the curl field is zero.	_				divergence o	f curl of a vector	
	f g h)o	Write down the diff Prove thatFCC latt Write down the diff radiation.	ice is the rec	iprocal of	f BCC₂lattic	e and v		210 ated emission of	210
	i) j))	Derive steady state Write down the ad numerical aperture	dvantages o	f fibre op	otics cable	s over	conventiona		
	k 2 i	1.0	The wave function is the probability th	at the syster	n is to be	found in th	ne state	$\Phi_3(\mathbf{x}).$	010	210
	1)		Calculates the exp box of length I, $\psi =$	_		component	or mom	entum of a f	iree particle in a	

210		210	210	210	210	210	210	210	
210	Q3	a) b) 210	Only Long Answer Ty Set up the differential of resonance. Prove with necessary experiment, as obtain numbers.	equation of motion diagram that the	on for forced osc e diameters of th	illation and deriv	Newton's ring	(6) (6) ₂₁₀	
	Q4	c) a)	In a Newton's ring syst 0.150cm respectively. What do you mean by	What is the diam miller indices?	neter of the 15 th rir	ng?		(4) (6)	
210		c)	Write down the differer	dices of the plane (5, 7,9). rite down the difference between step index fibre and graded index fibre in the basis of band theory, distinguish between conductors, semiconductors and sulators.					
	Q5	a) b)	advantages of He-Ne I	aser over ruby la	aser	d working of He-Ne laser. What are the the theorem prove that the volume of the			
210	Q6	a) ⁰ b) c)	What is Photoelectric e Using Heisenberg's un harmonic oscillator can Derive time independe	ncertainty princip nnot be zero.	le prove that the	energy of the or	210 ne dimensional	(4) 210 (6) (6)	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	