

Time: 3 Hours

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

					BD17001014

Total Number of Pages : 02 B.TECH

AR-17 B.TECH 1ST SEMESTER EXAMINATIONS(BACK), NOV/DEC 2019

BBSES1041- BASICS OF ELECTRONICS

The figures in the right hand margin indicate marks.

	<u>PART-A</u>	(10X1 = 10 MARKS)
Answei	r all questions.	
a)	In a pnp transistor, the current carriers are	
b)	In a transistor, $I_C = 100$ mA and $I_E = 100.2$ mA. The value of β is	
c)	DC average current of a half wave rectifier output is	
d)	In a transistor if $\beta = 100$ and collector current is 10 mA, then I_E is	
e)	A semiconductor has temperature coefficient of resistance.	
f)	When a penta-valent impurity is added to a pure semiconductor, it becomes	•••••
g)	The Minimum number of NOR gates required to design XNOR IS	
h)	2's complement of -39 is	
i)	For converting analog signal to Digital signals device used is called	·
j)	If even number of 1 is there in input, the XOR gate has a output value of	.

PART-B

 $(15 \times 2 = 30 \text{ MARKS})$

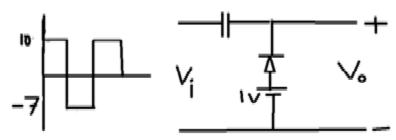
Max Marks: 100

Answer any fifteen questions from the following.

- 1. PN Junction diode made up of which material (Si, Ge, GaAs) will have highest thermal stability? Why?
- 2. Find the frequencies f & ω of a sin wave signal with a period of 1ms.
- 3. Why BJT is called so current controlled device?
- 4. Define positive logic and negative logic.
- 5. Why the time base in a CRO is of saw-tooth type?
- Derive the equation $Ic = \beta I_B + (1 + \beta)I_{CO}$
- 7. What is the decimal equivalent of hexadecimal number (BAD)₁₆?
- 8. Find the percentage increase in thereverse saturation current of a diode if the temperature is increased from 25 °C to 50 degree centigrade.
- 9. Use NAND gates only to implement the expression X=A'+BC.
- 10. In an half wave rectifier, the input sine wave is 200sin200 πt. If load resistance is of 1k then find the average DC power output .
- 11. Give two reasons of using modulation.
- 12. what is zener breakdown? Draw its VI characteristics.
- 13. What are the merits & demerits of amplitude modulation over frequency modulation?
- 14. A Lissajous pattern on a CRO has 5horizontal tangencies & 2 vertical tangencies. The frequency of horizontal input is 1Khz. What is the frequency of vertical input?
- 15. What is the Shockley's equation when $V_{GS}=-1v$ and $V_p=-4v$ with $I_{DSS}=8mA$
- 16. Convert (ABCD)₁₆ = $(\ldots)_8$
- 17. How to measure the frequency in Lissajous Pattern?

BD17001014

- 18. Convert (A'+B+C) (C+D) into canonical SOP.
- 19. Implement (AB+C) using only NOR gate.
- 20. Convert \sum (1.3, 5, 6, 7) in to canonical POS.


PART-C

 $(6 \times 5 = 30 \text{ MARKS})$

Section-i

Answer any Six questions

- 1. Explain the basic block diagram of communication System.
- 2. Explain the working principle of CRT with neat diagram.
- 3. Calculate the value of output voltage for the given circuit and draw the output wave form?

- . D. M
- 4. state De-Morgan's theorem and apply to the following expression:

a.
$$Y = \overline{A\overline{B}} + C\overline{D} + EF$$

- 5. Derive an expression for Idc&Irms for half-wave rectifier &find its maximum efficiency.
- 6. Describe the principle of operation of enhancement type MOSFET with suitable diagrams.
- 7. Explain the half adder with neat diagram.
- 8. Explain the block diagram of CRO.

Section-ii

Answer any Two questions

 $(2 \times 15 = 30 \text{ MARKS})$

- 1) Distinguish between a half-adder & Full adder. Explain full adder with the help of its truth table.
- 2) A crystal diode having an internal resistance rf= 20Ω is used for half wave rectification .If the applied voltage is v=50sin ω tand the load resistance RL= 800Ω . Determine the following :
 - i) Im,Idc,Irms
 - ii) AC power input & DC power output
 - iii) Ripple Factor
 - iv) DC output voltage
 - v) PIV
- 3) Explain the functional block diagram of AF sine & square wave generator.
- 4) (a) Explain the full Adder with neat sketch.
 - (b)Implement Full Adder using minimum no of Nand Gate.