	Name and Administration of the Control of the Contr				
Regis ation No.:					
Total number of pri	inted pa	ges-3			B. Tech.
					PCCH 4305

Sixth Semester Examination - 2011 CHEMICAL REACTION ENGINEERING

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- (a) For a given reaction 2A + B ----- 2 C + 3 D, establish a relationship between rates of formation and disappearance of the four components.
 - State molecularity and order of a reaction.

Answer the following questions:

1.

- (c) For the chemical reaction A + B + C \xrightarrow{K} D, If was found that the rate of the reaction doubled when the concentration of B was doubled, that the rate of reaction doubled when the concentrations of both A and B were doubled, and quadrupled when the concentration of both B and C were doubled. Wet is the overall order of the reaction?
- (d) For an autocatalytic reaction $A + R \longrightarrow R + R$, the plot of fractional conversion of A Vs. time is?
 - Straight line parallel to the time axis (i)
 - (ii) Straight line passing through the origin
 - (iii) an S-shaped curve passing through the origin.
- (e) What is space time and mean residence time (explain with suitable example)?

2×10

	(f)	A homogeneous liquid phase reaction is conducted in a be reactor at a speed of agitation of 500 rpm. If the speed of agitation is doubled,?
		(i) the reaction rate will double
		(ii) the reaction rate will be halved
		(iii) the reaction rate will remain unaffected.
	(g)	Find $'\in_A'$ and $'\in_B'$ (fractional change in volume) for the reaction
	(0)	A+3B \longrightarrow 5R, if $C_{BO} = 200$ and $C_{AO} = 100$.
	(h	For a zero order reaction the fractional conversion of the reaction is?
		(i) directly proportional to the initial concentration
		(ii) inversely proportional to the initial concentration
		(iii) independent of the initial concentration.
	(i)	What is selectivity? Explain with an example.
	(j)	The exit age distribution curve E (t) for an ideal CSTR with the average residence time ' τ ' is given by?
		(i) $e^{-t/\tau}$
		(ii) $(1/\tau) e^{-t/\tau}$
		(iii) $1 - e^{-t/\tau}$
2.	(a)	Derive the performance equation of batch reactor. 5
	(b)	Write advantages and disadvantages of a batch Reactor. 5
3.	(a)	Following gas phase reaction takes place at 500°C.
		$4PH_3 \longrightarrow P_4(g) + 6H_2$, with $-r_{PH3} = 85 \text{ hr}^{-1} \text{ C}_{PH3}$. Find the volume of PFR operating at this temperature and 5 atm giving 75% conversion for a feed of 2.5 Kmol/hr.
	(b)	The rate of a reaction at 40°C is three times the rate at 20°C. Find the activation energy.
4.	A fir reac	degree of increase in recycle ratio increases the degree of back mixing. st order liquid phase reaction, 92% conversion is taking place in a mixed ctor. It has been suggested that a fraction of product stream, with no itional treatment, be recycled. If the feed rate remains unchanged, in what would this affect conversion?

5. For a constant density isothermal system, the reactor concentration in the effluent stream of a reactor vessel is obtained as follows in response to a pulse of tracer added to the feed:

Time, Sec	0	5	10	15	20	25	30	35
Tracer con., kg/m ³	0	3	5	5	4	2	1	0

- (a) Plot the exit age distribution E (RTD) for the system.
- (b) If the reactor as a closed vessel is well represented by dispersion model, calculate the vessel dispersion number D/uL 5
- 6. For the parallel decomposition of A, where is 'S' is the desired product, $C_{AO} = 2$, What maximum C_s we may expect in isothermal operations :

A

R,
$$r_R = 1$$

S, $r_S = 2C_A$

T, $r_T = C_A^2$

(a) In a mixed reactor.

5

(b) In a plug flow reactor.

5

5

- 7. (a) A first order reaction is to be treated in a series of two mixed reactors, show that the total volume of the two reactors is minimum, when the reactors are equal in size.
 - (b) For the reaction in series, $A \longrightarrow R \longrightarrow S$, K_1 and K_2 are the rate constants and if $K_1 \ne K_2$, find the maximum concentration of R and when it is reached?
- 8. Write short notes on any two of the following:

5+5

- (a) Temperature dependency from transition state theory
- (b) Integral method of analysis
- (c) Advantages and disadvantages of plug flow reactor.