Registration No. :					
Total number of printed pages – 2					MCA
					MCC 103

Special Examination – 2012

DISCRETE MATHEMATICS

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following:

2×10

- (i) Find the matrix representation of the relation $R = \{(a, a), (a, b), (b, c)\}$ defined on $\{a, b, c\}$.
- (ii) Define an equivalence relation. Do you think the relation $R = \{(a,a), (b,c), (c,a), (b,a)\}$ defined on the set $A = \{a, b, c\}$ is an equivalence relation?
- (iii) What do you mean by reflexive closure of a relation? What is the reflexive closure of an equivalence relation R defined on a set A?
- (iv) What are the characteristics of Hasse diagram of a partial order relation?
- (v) Define maximal and minimal elements of a lattice.
- (vi) Find the inverse of each element of the poset (P(S), \subseteq), where S is the set {a, b, c}.
- (vii) Define semigroup and monoid. Give one example of each.
- (viii) Define the degree of a vertex of a graph and length of a path in a graph.
- (ix) Differentiate between a Hamiltonian path and Euler path.
- (x) What is the structure of a proof by contradiction?
- (a) Prove by mathematical induction that 4ⁿ 1 is divisible by 3 for all integers n > 0.
 - (b) Let R be a relation on a set A. Explain how to use the diagraph of R to create the diagraph of the symmetric closure of R.

- (a) If R is a relation defined on A = $\{a_1, a_2, a_3, ..., a_n\}$, then show that 5 3. $M_R^2 = M_R \otimes M_R$ (b) Let R be a relation on a set A. Then show that R^{∞} is the transitive closure of R. (a) Show that if n is a positive integer and p² | n, where p is a prime number, 4. 5 then D_n is not a Boolean algebra. Show that in a Boolean algebra for a, b, c if $a \le b$ then $a \lor (b \land c) = b \land (a \lor c)$. 5 Define a tree. Construct a tree of the following algebraic structure: 4 5. (a) $((2 + x) - (2 \times x)) - (x - 2)$ (b) Let R be a symmetric relation on a set Then show that the following 6 statements are equivalent: R is an undirected tree (ii) R is connected and acyclic (a) Let G be a group with identity element e. Show that if $a^2 = e$ for all a in G, 6. then G is abelian. (b) Let G be a group. Show that the function $f: G \to G$ defined by $f(a) = a^2$ is a homomorphism if and only if G is abelian. Show that if a graph G has more than two vertices of odd degree then there 7. 5 can be no Euler path in G. (b) What do you mean by spanning tree of a graph? Write one algorithm to find the minimum spanning tree of a graph and explain each step. 5 Write short notes of the following: 2.5×4 8. Tree traversal (a)
 - (b) Group code
 - (c) Methods of proof
 - (d) Chromatic Number

....