Total number of printed pages – 2							 			. Tech
rotarriation of pri	nea pa	903	-				-	CDES	5203 (Old	-

Special Examination – 2012

DIGITAL ELECTRONIC CIRCUIT

Full Marks - 70

Time: 3 Hours

Answer Question No. **1** which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (i) Find the radix of the number system where 24+17=40'.
- (ii) Perform the following subtraction using 2's compliment. $(1101001)_2 (1011001)_2 = ?$
- (iii) State De Morgan's law?
- (iv) What is gray code? Convert (100110101)₂ into gray code?
- (v) What is the difference between combinational circuit and sequential circuit?
- (vi) What is a Flip-flop? How many D Flip-flops are required to design MOD-3 counter?
- (vii) Draw the truth table for the function, F = A + BC.
- (viii) State the difference between "latch" and "flip-flop".
- (ix) How many 16K ×1 RAMs are required to obtain a memory with word capacity of 64K? The world length is of eight bits.
- (x) How many clock pulses are required shift eight bits of data into and out of an eight bit serial-in serial-out shift register?
- 2: (a) Establish the following identities of Boolean algebra

5

- (i) A + AB = A
- (ii) (A + B)(A + C) = A + BC
- (b) A circuit has three inputs and one output terminal. The output is 1 if any two of the three inputs are 1 and zero for the rest condition. Design the combinational circuit with necessary logic gates.

P.T.O.

	(C)	An equality detector gives the output Y=1, if both the inputs of combinational circuits are same and zero for other remaining conditions.	
		Implement the circuit using logic gates.	2.5
3.	(a)	Simplify F (A, B, C, D) = ABC + BCD + AD using K_Map.	4
	(b)	What is a Full adder circuit? Draw its truth table. Design a Full adder circuits using two half adder circuits and 'OR' gates.	dder 6
4.	The	four variable logic function can be expressed as	
	F (A	$A, B, C, D) = \sum (1, 2, 5, 7, 9, 11, 14)$. Realize the above function using	
	(a)	8×1 MUX	
	(b)	NAND gates only	
	(c)	NOR gates only.	10
5:	(a)	Design a MOD -7 synchronous counter with Thip-flops.	5
	(b)	What is a shift register? Explain the principle of 4-bit parallel-in para out shift register.	allel- 5
6.	(a)	What is Hamming code? Explain, how error is detected and corrected the receiving end using hamming code?	ed at 5
	(b)	Obtain EX_OR logic operation using only NAND logic gates. Explain importance of EX-OR logic gates in transmission of binary digits.	the 5
7.	(a)	What is "Fan in" and "Fan out" of the integrated logic circuits?	2
	(b)	Explain the use of preset and clear inputs in a flip-flop.	2
	(c)	What is propagation time of a counter? Find the propagation time synchronous MOD-39 counter if the propagation time of the NAND and T-flip-flop used in the counter is 12 and 21 nano second respective	gate
	(d)	State the difference between Static RAM and Dynamic RAM.	3
8.	Wri	te short notes on any two :	5×2
	(a)	ECL	
	(b)	Encoder	. 9
	(c)	Magnitude comparator	
	(d)	C-MOS logic	