Registration No.:						
Total number of printed pages – 2						B. Tech
					4	DCEC 4202

Special Examination – 2012 DIGITAL ELECTRONIC CIRCUIT

Full Marks - 70

Time: 3 Hours

Answer Question No. **1** which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Add two numbers (-7, +18) in 2' complement notation.
- (b) What is a tri-state logic gate? Explain its importance in logic circuits.
- (c) Write characteristics equation and excitation table for the T filp-flop.
- (d) What is lithographic process?
- (e) What will happen when the time period of clock signal is greater than propagation time of the Flip-flop? Explain will timing diagram.
- (f) Which is called a self complimenting code and why?
- (g) Draw the circuit diagram of a 4-bit even parity generator and checker.
- (h) How the 'fan in' and 'fan out' of TTL logic is specified?
- (i) Design a MOD-2 counter with J-K flip-flop.
- (j) An equality detector gives the output Y = 1, if both the inputs of the combinational circuits are same and zero for other conditions.
- 2. (a) Simplify the following Boolean function using a four variable K-map:

 $F(A, B, C, D) = \sum m(0, 1, 3, 4, 5, 7, 9, 11, 15).$

And then, realize the simplified functions using logic gates.

(b) Simplify the following function using Boolean algebra identity.

 $F(A, B, C, D) = \sum m(4, 5, 6, 7, 12, 13, 14).$

And then, write the simplified functions in POS and SOP form.

5

5

3.	(a)	What is race around conditions? How it is avoided	
		(i) Using master slave Flip-flop?	
		(ii) Using edge triggering?	6
	(b)	Implement the following function using NOR gate only.	
	, ,	F(A, B, C, D) = (A + C)(B + D).	
		Justify your answer with necessary mathematical expression.	4
4. (a)	(a)	Design a combinational circuit which will convert a 4 bit binary number	0
		4 bit gray code.	5
	(b)	Design a counter which will count the following repeated binary sequence	e :
		0, 2, 5, 6, 7, 0, 2, using T flip-flop.	5
5.	(a)	Design a sequential circuit with two D-flip-flops A and B and one input X	Κ.
		When $X = 0$, the state of the circuit remain same. When $X = 1$, the circu	ıit
		goes through the state transition from 00 to 01 to 11 to 10 d back to 00 and	d
		repeats.	5
	(b)	What is a shift register? Explain the principle of and bit Serial-in parallel-o	
		shift register.	5
6.	(a)	Design a synchronous sequential circuit using D flip-flop which will cou	
		the binary sequence 1100. Also draw the state diagram and state table for	_
		the above circuits.	6
	(b)	Implement the following Boolean function using 4 × 1 MUX:	4
		F = A'B'C' + ABC + AB'C + A'BC'	
7.	(a)	Explain the technique used for address multiplexing in D-RAM.	2
	(b)		4
	(c)	Explain briefly basic configuration of programmable logic devices (PLD).	
			4
8.	Writ	e short notes on any two:	2
	(a)	Resistors	
	(b)	Programmable array logic	
	(c)	Binary parallel adder	
	(d)	Decade counter	