Registration No.:		٠.								
-------------------	--	----	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PCCS 4204(New)

Special Examination – 2012

DESIGN AND ANALYSIS OF ALGORITHM

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

(i) Solve the following recurrence equation:

 $T(n) = 5T(n-1) + n2^n + n^2$

- (ii) Working modulo q = 11, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 3141592653589793 When tooking for the pattern P = 26?
- (iii) Define 0/1 Knapsack problem.
- (iv) Give the time efficiency and drawback of merge sort algorithm.
- (v) Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 7 as in a binary heap.
- (vi) Write a pseudo code for a divide and conquer algorithm for finding the position of the largest element in an array of N numbers.
- (vii) Give a simple example of a directed graph with negative-weight edges for which Dijkstra's algorithm produces incorrect answers.
- (viii) Draw a graph for the following matrix:

$$\begin{bmatrix} \infty & 0 & 1 \\ -2 & 0 & 1 \\ 0 & \infty & \infty \end{bmatrix}$$

- (ix) Whether Backtracking always produces optimal solution. Justify your answer.
- (x) What do you mean by Memoization?
- 2. (a) What do you mean by algorithm? State the criteria that should be satisfied by all Algorithms.

(b)	Find an optimal parenthesization of a matrix-chain product whose se	equen	ce
	of dimensions is $\langle 5, 10, 3, 12, 5, 50, 6 \rangle$		5

- (a) Describe the Traveling salesman problem and discuss how to solve it using Approximation algorithm.
 - (b) Write short note on 3-SAT problem.
- 4. (a) Write a recursive procedure to compute height of a binary tree. 5
 - (b) Compare how Dijkstra's and Floyd's algorithms solve the shortest-path problem. Should these two both be categorized as greedy, or both as dynamic-programming, algorithms?
- 5. (a) Compare Backtracking, Branch and Bound techniques with an example. 5
 - (b) Briefly state, what are the classes P, EXPTIME, NP, NP-Hard, and NPC. Give several containment relationships among them.
- 6. (a) Define spanning tree. Discuss the design steps in prims algorithm to construct minimum spanning tree with example. 5
 - (b) Explain connected components and bi-connected components with pseudo code.
- 7. Using Backtracking enumerate how can you solve the following problems:
 - (a) 8-queens problem 5
 - (b) Hamiltonian circuit problem 5
- 8. (a) Determine an LCS of $\langle 1, 0, 0, 1, 0, 1, 0, 1 \rangle$ and $\langle 0, 1, 0, 1, 1, 0, 1, 1, 0 \rangle$.
 - (b) Run the Bellman-Ford algorithm on the directed graph given below, using vertex z as the source. In each pass, relax edges in the same order as in the figure, and show the d and π values after each pass.

