rotarramicor er printea pages =	BCSE 3102 (Old
Total number of printed pages – 2	B. Tech
Registration No. :	

Special Examination – 2012 DATA STRUCTURES USING 'C'

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions: GIE

}t[3];

2×10

(a) Consider the following C declarate struct
{

int s[5];

union

{ float y;

long double z;
} u;

What is the memory requirement for variable t[3] of the array of structure?

- (b) Define Abstract Data Type with some examples.
- (c) What do you mean by linear and nonlinear data structure?
- (d) Differentiate a binary tree from a binary search tree.
- (e) What is meant by digraph? Define the terms in-degree and out-degree with respect to a digraph.
- (f) What is meant by topological sorting?
- (g) What is big-O notation? The following function

$$f(n) = n * (n-1) * (n-2) \dots 3*2*1$$

is best described by which big-O notation.

(h) Draw a directed tree representation of the formula

$$(a + b * c) + ((d * e ÷ f) * g).$$

	(i)	State two applications of Graphs.	
	(j)	What are the collision resolution techniques applied in the hash table?	
2.	(a)	What do you mean by algorithm? State the criteria that should be satisfied by all algorithms.	
	(b)	What is sparse matrix ? Illustrate the method of storing a sparse matrix efficiently with one example.	
3.	(a)	With the sequence of inputs 21, 6, 61, 44, 9, 76, 75, 32, 75, 4 construct a height balanced binary search tree.	
	(b)	Write a program in C to convert a singly linked list to circular linked list. Also compute the number of elements and sum of elements in the initial singly linked list.	
4.	(a)	Write a recursive program in C to compile height of a binary tree. 5	
	(b)	Write a recursive program in C which sort a list of strings. 5	
5.	Write	Write a C program to perform the following operation on a queue:	
	(a)	Insert	
	(b)	Delete	
	(c)	Display.	
6.	(a)	Write an algorithm for covert infix expression to postfix expression with an example of $(A + (B * C - (D/E^F) * G) * H)$.	
	(b)	Illustrate the procedure to construct a binary tree when its inorder and postorder traversal given as:	
		In-order : HDIJEKBALFMCNGO	
		Post-order: HIDJKEBLMFNOGCA	
7.	(a)	Use radix sort to sort the following integers: 5 439, 828, 355, 866, 790, 570, 374, 255, 427, 439	
	(b)	Explain with one example how a polynomial can be represented by a linked list.	
8.	Writ	te short notes on any two : 5×2	
	(a)	Dynamic Storage management	
	(b)	Symbol Table	
	3 6		
	(c)	Depth First Search Algorithm	
	(d)	Pattern Matching.	