## Fourth Semester Special Examination, 2012 COMPUTER BASED NUMERICAL METHOD

Time: 3 Hours Full Marks: 70

Answer question No.1 which is compulsory and any five from the rest.

The figures in the right – hand margin indicate marks.

## Q.1. Answer the followings

2X10

- a) Write the different sources of error in numerical computation.
- b) Explain the rate of convergence of regula falsi method
- c) What is the stability condition of a linear system of equations.
- d) Write the condition of convergence of Gauss Seidel method.
- e) Write the advantages and disadvantages of Lagranges method of interpolation.
- f) Find  $\Delta^2 5$ ,  $\nabla^2 8$  from the following data

| X | 0 | 2 | 4 | 6 _ |
|---|---|---|---|-----|
| У | 2 | 5 | 8 | 14  |

- g) What is the error in Simpson's 3/8 rule.
- h) Explain predictor corrector method giving suitable example.
- i) Write Adam-Moulton predictor\_corrector 3rd order formula to solve the initial value problem
- j) Write the error in Euler's modified method.
- Q.2.a) Find the root of equation  $\sin x xe^x = 0$  using fixed point iteration method.
- b) Find the rate of convergence of Newton-Raphson method to find the solution of an equation..
- Q.3. a) ) Find the inverse of matrix  $\begin{bmatrix} 1 & 10 & 1 \\ 10 & 1 & -1 \\ -1 & 1 & 10 \end{bmatrix}$  using Gauss Jordan method.
  - b) Solve the following system of equations using Gauss Jacobi method,

$$4x + y + 2z = 4$$

$$3x + 5y + z = 7$$

$$x + y + 3z = 3$$

Q.4. a) Find f(0.5) and f(3.5) using Newton divide difference interpolation method of the following data

| X | -2  | 0 | 1 | 3  | 4   |
|---|-----|---|---|----|-----|
| У | -23 | 1 | 4 | 82 | 193 |

b) Using inverse interpolation, find f(6) of the following data

| X | 2 | 4 | 5  |
|---|---|---|----|
| У | 5 | 9 | 14 |

Q. 5. a) Find f''(1), f'(3) from the following data using Newton's finite difference method

| X    | -1    | 0 | 1 | 2 | 3  |
|------|-------|---|---|---|----|
| f(x) | 0.333 | 1 | 3 | 9 | 27 |

b) Evaluate 
$$I = \int_{1}^{2} \frac{2x^{2}}{1+x^{4}} dx$$
, using Simphson's at  $3^{rd}$  rule.

Q.6 .a) Evaluate  $I = \int_{0}^{\pi/2} \sin x dx$ , using Simpson's 3/8 rule.

b) Evaluate  $I = \int_{-1}^{1} e^x \cos x dx$  using Gauss 3-point formula.

Q. 7. a) Solve  $dy/dx = y + x^2$ , y(0)=1 using Taylor's series method in the interval [0, 0.4].

b) Find the value of y(1.2) where  $dy/dx = \sqrt{x + y}$ , y(0.4)=0.41 using Modified Euler's Method

Q.8.a) Write the algorithm to find the solution of a differential equation using Runge-Kutta method of 4<sup>th</sup> order.

b) Write the algorithm to solve the following equation by using Adam-Bashforth 3<sup>rd</sup> order method

$$dy/dx = \frac{1}{1+x^2}$$
, y(0) = 1 in the interval [0,1].