Total number of printed pages – 2										B. Tech		
									_	CCH 4203		

Special Examination – 2012 CHEMICAL PROCESS AND CALCULATION

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) How many molecules are present in 700 gm of K₂CO₃?
- (b) Determine the volume of oxygen obtained under standard conditions, by the decomposition of 100 kg of potassium chlorate.
- (c) What are valency and equivalent weight?
- (d) A body weighs 1 kg in air, 0.9 kg in water, and 0.8 kg in a liquid. Find the specific gravity of the liquid.
- (e) Define normality and molarity.
- (f) Explain yield and selectivity with example.
- (g) An automobile tyre is inflated to a pressure of 190 kPa at 273 K. If the pressure inside the tyre is not to exceed 250 kPa, what is the maximum temperature the tyre may be heated?
- (h) What are wet bulb temperature and humid heat?
- (i) Write Hess's law.
- (j) Differentiate between heat of solution and heat of mixing.
- 2. In the vapour-phase hydration of ethylene to ethanol, diethyl ether is obtained as a by-product.

$$\begin{aligned} & \text{C}_2\text{H}_4 + \text{H}_2\text{O} \to \text{C}_2\text{H}_5\text{OH} \\ & 2\text{C}_2\text{H}_4 + \text{H}_2\text{O} \to & (\text{C}_2\text{H}_5)_2\text{OH} \end{aligned}$$

A feed mixture consisting of 60% ethylene, 3% inerts, and rest water is sent to a reactor. The products analyzed to contain 54% ethylene, 14% ethanol, 2% ether,

P.T.O.

- 26% water, and rest inerts. Calculate: (i) conversion of ethylene and (ii) yield of ethanol and ether based on ethylene.
- 3. Natural gas is piped from the well at 300 K and 400 kPa. The gas is found to contain 93 % methane, 4 % ethane, and rest nitrogen. Calculate: (i) partial pressure of nitrogen, (ii) pure component volume of ethane in 10 m³ of the gas, (iii) density at standard conditions in kg/m³, and (iv) average molecular weight of the gas.
- 4. An aqueous solution of Na₂CO₃ contains 15 % carbonate by weight. 80 % of the carbonate is recovered as Na₂CO₃.10H₂O by evaporation of water and subsequent cooling to 273 K. The solubility of Na₂CO₃ at 278 K is 9 % (weight). On the basis of 100 kg of solution treated, determine the quantity of crystals formed and the amount of water evaporated.
- 5. (a) Using humidity chart find the dew point, % Apply and H for a mixture of airwater vapour system having DB = 35°C and WB 26°C.
 - (b) 10,000 kg/h of solution containing 20 % methanol is continuously fed to a distillation column. Distillate is found to contain 98 % methanol and waste solution from column carries 1 % methanol. All percentages are by wt %. Calculate the mass flow rate of distillate and product and the percent loss of methanol.
- 6. In a sulphuric acid plant, pyrites containing 50 % (weight) sulphur is burnt to give SO_2 which is subsequently converted to SO_3 in a converter. The analysis of the burner gas shows 9% SO_2 and 7% O_2 . The cinder is analysed and it is found that it contains 3% sulphur as SO_3 . Assuming that all the sulphur in the feed is burnt, calculate the weight of pyrites burnt per 100 kmol SO_3 -free burner gas.
- 7. (a) Calculate the heat of reaction for the esterification of ethyl alcohol with acetic acid if the standard heats of combustion are: ethyl alcohol (I), 1367 kJ/mol; acetic acid (I), 872 kJ/mol; and ethyl acetate (I), 2275 kJ/mol. 5
 - (b) Discuss on the effect of temperature on heat of reaction.
- 8. Write short notes on any two:

(a) Van der Waal's theory

- (b) Effect of temperature on heat capacity
- (c) Adiabatic flame temperature
- (d) Humidity chart.

5

5×2