Registration No.:						
Total number of print	ed pa	ges – 2				MCA
						MCC 204

Special Examination – 2012 THEORY OF COMPUTATION

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks

1.

		The ligures in the right-hand margin indicate marks.	
1.	Ans	wer the following questions:	2×10
	(a)	What is Chomsky's hierarchy?	
	(b)	State the mathematical definition of DFA.	
	(c)	Define Context Free grammar.	
	(d)	What is configuration of a Turing machine?	
	(e)	When do we say that a function is Turing - computable?	
	(f)	When do we say that a function is Provitive recursive?	
	(g)	What is PDA?	
	(h)	Define the class NP.	
	(i)	Define the concept of validity in prepositional calculus.	
	(j)	Construct truth tables for the following formula : (A \leftrightarrow (B \leftrightarrow A))	
2.	(a)	Prove that, for every non deterministic finite automation there equivalent deterministic finite automation.	e is an 5
	(b)	Construct an NFA with ϵ transitions to accept line comment statement programming.	ent in C 5
			P.T.O.

- 3. (a) Show that the class of Languages accepted by pushdown automata is exactly the class of context-free languages.
 - (b) Construct context free Grammar that generate the language 5 {wcw^R Γ wε {a, b}*}
- 4. (a) Describe the Turing Machine which shifts a string w containing no blanks to one cell to the left.
 - (b) Construct a Turing Machine that accepts the Languages a' ba'b. 5
- 5. (a) Describe the method of Godelization.
 - (b) Show that the function f(n) = n! is primitive recursive.
- 6. (a) What is halting problem? Explain.
 - (b) Show that any finite set is Turing-decidable. 5
- 7. (a) Let L b an NP-complete language. Then P = NP if and only if L ϵ P. 5
 - (b) Show that Travelling salesman problem is NP-complete. 5
- 8. (a) Show that the following formula of prepositional calculus is a Tautology. $((P \to Q) \to R)) \to ((P \to Q) \to (P \to R))$
 - (b Describe resolution in Predicate calculus. 5