| Registration No.:                 |         |  |  |
|-----------------------------------|---------|--|--|
| Total number of printed pages – 2 |         |  |  |
|                                   | BE 2101 |  |  |

## Special Examination – 2012 BASIC ELECTRONICS

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is the significance of Virtual Ground
- (b) Explain the difference between analog, digital and discrete Time Signal.
- (c) Define the following terms:
  - (i) Slew Rate of an Op-Amp
  - (ii) Unity gain bandwidth
- (d) What is a load line? How it is used to calculate the operating point?
- (e) Compare the PIVs of a half-wave rectifier and a full wave rectifier.
- (f) A signal is represented by  $y = 10 \text{ Sin } (628 \text{ t} + 30^{\circ})$ . Find the frequency, amplitude and initial phase of the signal.
- (g) Why voltage series feedback is most commonly used in amplifier?
- (h) Determine the DC resistance of a diode at  $V_D = -20$  V if its reverse saturation current is  $1 \mu$  A. (Take  $V_T = 25$  mV at room temperature)
- Compare the advantages and disadvantages between center-tapped and bridge-type full wave rectifier.
- (j) Convert the decimal number 64 to its equivalent 1's complement and 2's complement forms.
- (a) What is clamper circuit? Draw the circuit diagram of positive clamper and negative clamper showing their output waveforms.
  - (b) Explain the operation of Full Wave Rectifier (Center Tapped type) with input-output waveforms.

P.T.O.

| 3.    | (a) | A Crystal diode having an internal resistance $r_f = 20 \Omega$ is used for full-way rectification. If the applied voltage is $V = 50 \sin 2t$ and the load resistance $R_L = 1000 \Omega$ , determine the following: |    |
|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       |     | <ul> <li>(i) I<sub>m</sub>, I<sub>dc</sub>, I<sub>rms</sub> of output.</li> <li>(ii) AC power input and DC power output</li> </ul>                                                                                    |    |
|       |     | (iii) Ripple factor                                                                                                                                                                                                   |    |
|       | (b) | What are ideal Characteristics of an op-amp?                                                                                                                                                                          | 4  |
| 4.    | (a) | State and explain the function of the sweep signal in an oscilloscope. Wh                                                                                                                                             |    |
| •     | (a) | is Lissajous method? Does Lissajous method require sweep signal                                                                                                                                                       |    |
|       |     | Justify answers in brief along with suitable diagram or graphs.                                                                                                                                                       | 5  |
|       | (b) | Draw the block diagram of function generator and explain its operation.                                                                                                                                               | 5  |
| 5. (a | (a) | Draw circuits for both inverting and non-inverting amplifiers using op-am                                                                                                                                             | p. |
|       |     | Derive an expression for the gain of an inverting amplifier.                                                                                                                                                          | 5  |
|       | (b) | How the transistor can be used as an amplifier in CE configuration                                                                                                                                                    | ?  |
|       |     | Explain with proper diagram.                                                                                                                                                                                          | 5  |
| 6.    | (a) | What is the condition of oscillation? Derive expression of frequency                                                                                                                                                  | of |
|       |     | oscillation and also the condition of oscillation in a secondary share shift oscillate                                                                                                                                | r. |
|       |     |                                                                                                                                                                                                                       | 5  |
|       | (b) | Derive the condition of oscillation in a Wein-Bridge oscillator. Also derive it                                                                                                                                       | ts |
|       |     | frequency of oscillation draw a neat sketch.                                                                                                                                                                          | 5  |
| 7.    | (a) | Implement the following logic functions:                                                                                                                                                                              | 5  |
|       |     | (i) $X = \overline{A} + BC$ using NAND gates only                                                                                                                                                                     |    |
|       |     | (ii) $Y = \overline{A}B + C$ Using NOR gates only                                                                                                                                                                     |    |
|       | (b) | Classify different types of RAMs. Explain the operation of SRAM.                                                                                                                                                      | 5  |
| 8.    | (a) | Distinguish between multiplexer and demultiplexer. Draw the logic diagram                                                                                                                                             | n  |
|       |     | of 4-to-1 line multiplexer.                                                                                                                                                                                           | 4  |
|       | (b) | Convert the following SOP expression into its standard POS form and write                                                                                                                                             | е  |
|       |     | its truth table.                                                                                                                                                                                                      | 6  |

AB'C + A'B' +ABC'D