| Registration No.:                 |  |  |  |  |  |  |  | *         |
|-----------------------------------|--|--|--|--|--|--|--|-----------|
| Total number of printed pages – 4 |  |  |  |  |  |  |  | B. Tech   |
|                                   |  |  |  |  |  |  |  | CDEC FOOA |

Special Examination – 2012

## **NETWORK THEORY**

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Write down two properties cut set?
- (b) State Maximum power transfer Theorem?
- (c) What do you mean by mutual inductance? Explain.
- (d) Write down the relation between links and twigs.
- (e) Why a step signal is preferred input for study of transient response?
- (f) Discuss two utilities of fourier series in network theory.
- (g) The transmission parameter equation of a two port device is defined by the following pair of equations:

$$V_1 = 5V_2 - 2I_2$$
,  $I_1 = 4V_2 - 3I_2$ .

Write its impedances parameter  $Z_{11}$ ,  $Z_{12}$ ,  $Z_{21}$ ,  $Z_{22}$ .

- (h) Draw the circuit for a second order active low pass filter.
- (i) Write down two applications of active filter?
- (j) Check whether  $F(s) = \frac{2S^2 + S + 1}{S^2 + 2S + 1}$  is a positive real function.

2. (a) What do you understand by dot convention for representing the mutually coupled coils? Explain in brief by drawing a circuit showing dot convention.

5

(b) For the network shown in Fig 2 (b), draw the oriented graph and obtain the tie set matrix. Also use this matrix to calculate the current i. 5



Fig 2(b)

3. (a) Verify the Reciprocity Theorem for the network shown below in Fig 3(a).

Using current source as shown and v<sub>1</sub> is the voltmeter adjust.



Fig 3(a)

- (b) A current source, having an internal resistance of  $5k\Omega$  feeds a tank circuit containing a coil having L= 200 mH and R= 20  $\Omega$  in parallel to a capacitor of 200  $\mu$  F. Find the frequency of resonance and Q factor.
- 4. (a) Determine the complex frequency S of each term:

5

- (i)  $v(t) = 8 + 2\cos t \, mV$
- (ii)  $v(t) = 65e^{-1000t} \cos 1000t V$
- (iii)  $q(t) = 7e^{-5t}C$
- (iv)  $q(t) = 7e^{-5t} 19e^{-5t} \sin(8t 42^{\circ}) C$

**CPES 5201** 

2

Contd.

(b) In the network shown Fig 4(b) the switch is closed and a steady state is reached in the network. At time t=0 the switch is opened . Find the expression for the current through the inductor  $i_2(t)$ ?



5. (a) Determine the fourier series expansion of the function for the wave form shown below n Fig 5(a).



- (b) Obtain the fourier coeffecients for the function given by  $f(t) = (t + \pi)$  when  $-\pi < t < \pi$ ;  $f(x + 2\pi) = f(x)$ .
- 6. (a) Determine the Z parameter for the bridged T network shown in Fig 6 (a) below.



Fig 6(a)

- (b) What are the limitations on pole and zero locations in transfer function? 5
- 7. (a) Design a constant k high pass filter having a cut off frequency of 1500 Hz. The resistance of the load circuit is  $600\,\Omega$ . Determine the values of components required?
  - (b) Synthesize the impedance function  $Z(s) = \frac{S(S^2 + 3)(S^2 + 5)}{(S^2 + 2)(S^2 + 4)}$  Using Cauer II form?
- 8. Write short notes on any **two**:

5×2

- (a) Band width and Selectivity
- (b) Milliman's Theorem
- (c) Final value theorem