				Ī	PCCH 4	204 (New)
Total number of printed pages – 2						B. Tech
Registration No. :						

Special Examination – 2012 MECHANICAL OPERATION

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations wherever necessary.

Assume any missing data suitably

1. Answer the following questions:

2×10

- (a) Is sphericity independent of particle size? Justify,
- (b) Discuss the properties of the material that affect the size reduction operation.
- (c) Define and explain Rittinger's number.
- (d) Explain how coefficient of friction and angle of nip are related.
- (e) Name the factors affecting the size of product obtained from a ball mill.
- (f) Write the factors affecting screen effectiveness.
- (g) The successive opening in the Tyler series screen is with a constant ratio of
- (h) Define drag coefficient and settling ratio.
- (i) Differentiate between constant pressure and constant rate filtration.
- (j) Why are idlers used in belt conveyors?
- 2. (a) Find the sphericity of a cuboid whose length, breadth, and depth are in the ratio of 4:3:2.
 - (b) What are the different mean diameters used to represent the particle size of a mixture? Are all the mean diameters same? Justify.
- 3. A sample of materials is crushed in a Blake jaw crusher, such that the average size of the particles is reduced from 60 mm to 12 mm with the energy consumption of 14 kW/(kg/s). Determine the consumption of energy to crush the same material of average size 80 mm to an average size of 27 mm using Rittinger's and Kick's Laws.

4. A quartz mixture is screened through a 28-mesh screen. The cumulative screen analysis of the feed, overflow, and underflow are given in the following table.

Mesh	D _p , mm	Cumulative mass fraction greater than D					
		Feed	Overflow	Underflow			
4	4.699	0	0	0			
8	2.362	0.15	0.43	0			
10	1.651	0.47	0.85	0.195			
28	0.589	0.94	1.00	0.91			
65	0.208	0.98	_	0.975			
Pan	_	1.00	_	1.00			

Calculate the mass ratios of overflow to feed and underflow to feed. Also calculate the overall effectiveness of screen.

- 5. (a) Discuss in detail with a neat sketch the construction and working of a vibrating screen.
 - (b) Discuss in detail with a neat sketch the construction and working of a Wilfley table.
- 6. (a) Discuss in detail with a neat sketch the construction and working of a fluid energy mill.
 - (b) Discuss in detail with a neat sketch the construction and working of a rotary drum filter.
- (a) Find the drag coefficient for a boat moving in water at 15 cm/s. The size of boat is 2 m and kinematic viscosity of water is 10⁻⁶ m²/s.
 - (b) Discuss in detail with a neat sketch the construction and working of a belt conveyor.
- 8. Write short notes on any **two**:
 - (a) Gyratory crusher
 - (b) Leaf filter
 - (c) Kneader
 - (d) Screw conveyor

5×2