	79					RSC	M 2102(O)
Total number of printed pages – 2					B. Tech		
Registration No. :							

Special Examination - 2012

MATHEMATICS - II

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions

2×10

- (a) Check whether the vectors (2,5,0), (5,3,8), (8,6,3) in R are linear independent or not.
- (b) Define eigen value and eigen vector of the matrix.
- (c) Define Hermitian, Skew-Hermitian, Orthogonal, Unitary matrices.
- (d) Find the smallest positive period of the function $f(x) = \sin 2\pi x$ and $\cos 5nx$
- (e) Prove that β (m,n) = β (n,m).
- (f) Find the projection of a = (5, 3, -1) over b = (2, 2, 1).
- (g) Prove that $\nabla \times \overline{r} = 0$
- (h) Compare Binomial, Poission's and Hypergeometric distribution.
- (i) What is the surface area of the surface S whose equation is F(x, y, z) = 0?
- (j) States Green's theorem.
- 2. (a) Using Gauss elimination method solve the following system of equation: 5 2x y 3z = 9, x + 3y z = -4, 3x + y + 4z = 10.
 - (b) Find a matrix A such that $X^TAX = (x_1 x_2 + 4x_3)^2 4(x_2 x_4)^2$.
- 3. (a) Find the Fourier series expansion of $f(x) = \pi \sin \pi x$, $0 < x \le 1$ and 0 otherwise.

P.T.O.

(b) Find the Fourier sine transform of $f(x) = \sin 2x$, $0 < x < \pi$ and 0 otherwise.

5

- 4. (a) Show that : $\int_{0}^{\infty} \frac{w^{3} \sin \pi w}{w^{2} + 4} dw = \pi e^{-x} \cos x.$ 5
 - (b) Find the unit normal vector at (1,1,2) to the surface $x^2 + y^2 + 5z^2 = 20$. 5
- 5. (a) Prove that : $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$.
 - (b) Find the area of the ellipse : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 6. (a) Prove that : div $(\vec{u} \times \vec{v}) = \vec{v}$. curl $\vec{u} \vec{u}$. curl \vec{v} .
 - (b) Find directional derivative of $f = xy^2 3xyz$ at (1, 2, 2) in the direction of normal to the surface $x^2 + y^2 z^2 = 1$ at (1,1,1).
- 7. (a) If S is any closed surface enclosing a volume V and F = xi +2y j + 3zk, find
 F.n ds.
 - (b) Find the integral $\int f dr$ where f = (2z, x, -y), r = (cost, sint, 2t) from (1,0,0) to $(1,0,4\pi)$.
- 8. (a) Using Gauss divergence theorem, evaluate the integral of \bigoplus_s F.ndA of $F = [x^3, y^3, z^3]$ and S is the sphere $x^2 + y^2 + z^2 = 9$.
 - (b) Verify Green's theorem in the plane for $\int_C \{(2x^2 y^3) dx xydy)\}$ where C is the boundary of the region enclosed by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.