Registration No. :	,					
Total number of printed pages – 2					В	. Tech
					B	S 1104

Special Examination - 2012

MATHEMATICS - II

Full Marks - 70

Time: 3 Hours

Answer Question No. **1** which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is the condition for existence of Laplace transform?
- (b) Find the inverse Laplace transform of $f(t) = \ln \left(\frac{s+2}{s+3} \right)$.
- (c) Find the Laplace transform of unit step function.
- (d) Find the smallest positive period of the function $f(x) = \sin 3\pi x$
- (e) Prove that β (m,n) = β (n,m).
- (f) Find the projection of a = (5, 3, -1) over b = (2, 2, 1).
- (g) Prove that $\sqrt{x} = 0$
- (h) Find the parametric representation of the Ellipsoid $x^2 + y^2 + \frac{1}{4}z^2 = 1$
- (i) What is the surface area of the surface S whose equation is F(x, y, z) = 0.
- (j) State Stokes theorem.
- 2. (a) Solve the differential equation $y^{11} + 3y^1 + 2y = t$, y(0) = 0 and $y^1(0) = 1$ using Laplace equation.

(b) Prove that
$$\beta$$
 (m, n) = $\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

3. (a) Find the Fourier series expansion of f(x) = x, when $0 < x < \pi$ 5 $= \pi - x \text{ when } \pi < x < 2\pi$.

P.T.O.

(p).	Find the Fourier sine transform of	$f(x) = \sin 2x ,$	$0 < x < \pi$	5
		= 0	otherwise.	

4. (a) Show that :
$$\int_{0}^{\infty} \frac{w^{3} \sin \pi w}{w^{2} + 4} dw = \pi e^{-x} \cos x.$$
 5

(b) Show that :
$$\Gamma(1/2) = \sqrt{\pi}$$

5. (a) Prove that:
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$

(b) Find the area of the ellipse:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

- 6. (a) Prove that : $div (\dot{u} \times \dot{v}) = \dot{v} \cdot curl \, \dot{u} \dot{u} \cdot curl \, \dot{v}$ 5
 - (b) Find directional derivative of $f = xy^2 3xyz$ at (1,2,2) in the direction of normal to the surface $x^2 + y^2$ 1 at (1,1,1).
- 7. (a) If S is any closed surface enclosing volume V and $\mathbf{F} = x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k}$. Find F.n ds.
 - (b) Find the integral $\int f.dr$ where f = (2z, x, -y), r = (cost, sint, 2t) from (1,0,0) to $(1,0,4\pi)$.
- 8. (a) Using Gauss divergence theorem, evaluate the integral of $\iint_S F. \, ndA$ of $F = [x^3, y^3, z^3]$ and S is the sphere $x^2 + y^2 + z^2 = 9$.
 - (b) Verify Green's theorem in the plane for $\int_C \{(2x^2 y^3) dx xydy)\}$ where C is the boundary of the region enclosed by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.