Registration No. :			
Total number of printed pages – 2			B. Tech
			BS 1101

Special Examination – 2012

MATHEMATICS - I

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Define Linear differential equation.
- (b) Define Wronskian and find the wronskian of $y_1 = \cos x$, $y_2 = \sec x$.
- (c) Do you think the differential equation $(x^3 + xy^2) dx + (ax^2y + bxy^2) dy = 0$ exact? If not, then what shall be the integrating factor to make it exact?
- (d) Define the asymptote of a curve.
- (e) What are Bessel's function and Bessel's education?
- (f) Show that $J_1^{-1}(x) = J_0(x) \frac{1}{x} J_1(x)$.
- (g) Define symmetric matrix, skew- symmetric matrix, Hermitian matrix, orthogonal matrix.
- (h) What kind of conic section is represented by the quadratic form $6x_1^2 + 16x_1x_2 6x_2^2 = 0$
- (i) Prove that eigen value of a symmetric matrix is real.
- (j) Prove that if λ is an eigen value of a matrix A then $\frac{1}{\lambda}$ ia an eigen value of A⁻¹.
- 2. (a) Solve: $\frac{dy}{dx} = x^3y^2 + xy$
 - (b) Solve $(3x^2y^4+2xy) dx + (2x^3y^3-x^2) dy = 0.$ 5

P.T.O.

- 3. (a) Find the current in the simple circuit with $c = \infty$ and $E(t) = E_0$ sinwt. 5
 - (b) Solve : $\frac{d^2y}{d^2x} 4\frac{dy}{dx} + 4y = e^x \cos x$.
- 4. (a) Solve the differential equation $(1-x^2)y^{11}-2xy^1+2y=0$, given that $y_1 = x$ is a solution.
 - (b) Using variation of parameter to solve the differential equation $\frac{d^2y}{d^2x} + 9y = \sec 3x.$
- 5. (a) Find the radius of curvature of the curve $r^2 = a^2(1 \cos^2 \theta)$.
 - (b) Find the asymptotes of the curve $y^2 = \frac{x^2(a+x)}{a-x}$.
- 6. (a) Find the power series solution of $y^{11} + 8xy^1 4y = 0$.
 - (b) Show that : $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$
- 7. (a) If A and B are two square matrices of the same order and A is symmetric then prove that B^TAB is also symmetric.
 - (b) Solve the system of equation :

$$2x - 3y = 1$$

 $2x - y - z = 2$
 $3x + y - 2z = 1$

8. (a) Find the eigen value and its corresponding eigen vector of the following matrix:

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

(b) Diagonalize the following matrix after finding the basis vectors:

$$A = \begin{bmatrix} -43 & 77 \\ 13 & 93 \end{bmatrix}$$

5