Registration No. :	
Total number of printed pages – 2	B. Tech
	CPCH 7202

Special Examination – 2012

FLUID FLOW AND FLOW MEASUREMENT

Full Marks - 70

Time: 3 Hours

Answer Question No. **1** which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations and any missing data wherever necessary.

Answer the following questions :

2×10

- (a) What are compressible and incompressible fluids
- (b) Discuss the effect of temperature on the viscosity of liquids and gases.
- (c) Write and explain the Newton's law of viscosity.
- (d) Draw the plot of shear stress vs. velocity gradient for Newtonian and non-Newtonian fluids with examples.
- (e) Define the equation of continuity.
- (f) Write and explain the Bernoulli's equation.
- (g) Write the Reynolds equation and mention its significance.
- (h) Name the device used to measure the local or point velocity.
- (i) Name the pump commonly employed in industry for handling high viscosity liquids.
- (j) Write the advantages and disadvantages of fluidization.
- 2. (a) Check the dimensional homogeneity of the following equation and comment. $h_i = 0.023 \; G^{0.8} \; k^{0.67} \; c_p^{-0.33} \; D^{-0.2} \; \mu^{-0.2}$

where, h_i = heat transfer coefficient, G = mass velocity, k = thermal conductivity, c_p = specific heat, D = diameter, and μ = viscosity.

P.T.O.

	(b)	Define and derive the barometric equation.	5
3.	(a)	Water of density 1005 kg/m ³ and viscosity 0.0008 N.s/m ² is pumped	
		990 cm ³ /s through a 24 mm ID pipe. Calculate the value of Reynolds num	ber.
			4
	(b)	A fluid is flowing through a 6 cm diameter pipe at a velocity of 2.5 m	
		Suddenly it enters into the larger cross-sectional part of the pipe having	
		diameter of 12 cm. Calculate the frictional loss due to sudden expansio	
		flow area.	6
4.	(a)	Draw a neat sketch of venturi meter and explain its construction.	5
	(b)	Derive the flow equation for venturi meters	5
5.		Crude oil of density 850 kg/m ³ is pumped at a rate of 5 l/s through 500 m	n of
		steel pipe under a pressure drop of 560 kPa. Calculate the Fanning frict	tion
		factor if the pipe diameter is 50 mm, using Hagen-Poiseulli equation.	10
6.	(a)	Differentiate between centrifugal and reciprocating pumps.	5
	(b)	Briefly explain the characteristic curves of centrifugal pump.	5
7.	A lic	quid of density 1200 kg/m³ is flowing from a point A to point B which is	6 m
	abo	ve point A. The frictional losses in a pipeline of 50 mm ID are 2J/kg for	or a
	volu	metric flow rate of 500 cm ³ /s. If point A and B are at atmospheric press	ure
	and	velocity at point A is zero, using Bernoulli equation, calculate the pu	ımp
	wor	k done.	10
8.	Writ	te short notes on any two :	5×2
	(a)	Orifice meter	
	(b)	Variable area meter	

-C

(c) Reciprocating pump

(d) Fluidization