Registration No. :							
Total number of pri	nted	page	s – 3				B. Tech
							PCEC 4201

Special Examination – 2012

ANALOGUE ELECTRONIC CIRCUIT

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1.	Answer	the	follow	ina aues	tions	
1.	Allswei	uie	TOHOW	mute dines	SHOHS	

2×10

- (a) How does the bas resistor affect the input resistance of a CE amplifier?
- (b) What is the need of biasing in an amplifier? What do you mean by 'proper biasing'?
- (c) If the overall bandwidth of three identical voltage amplifier stages connected in cascade is 1000. Find bandwidth of each stage in dB.
- (d) What are two salient features of a 'buffer amplifier' ?
- (e) Why the emitter resistance (RE) of the differential amplifier is made so high?
- (f) Why a crystal oscillator provides a stable frequency?
- (g) What is CMRR of an OPAMP? How CMRR can be increased during the manufacturing of OPAMP?
- (h) What is last stage of an OPAMP and why?
- (i) How a BJT amplifier behaves at low frequency?

- (j) Three OPAMP based instrumentation amplifiers are better than single OPAMP based instrumentation amplifiers. Justify.
- (a) Find the load line and operating point of the above transistor amplifier shown in Figure 1.

Fig. 1

- (b) Find voltage gain, current gain, input resistance and output resistance using h-parameter model of the circuit shown in fig. 1.
- 3. (a) A transistor has a value of α = 0.99 in a CB amplifier. Its load resistance is 4.5 Ω and dynamic resistance at the emitter junction is. 50 Ω . Find its voltage gain and power gain?
 - (b) Explain the frequency response of a CE transistor applifier. 5
- 4. (a) Explain the odd harmonic cancellation property of a pust pull power amplifier. Justify your answer mathematically.
 - (b) Derive the condition for oscillation in RC phase shift oscillator. 5
- (a) Establish a condition for applying maximum signal frequency to an OPAMP which has finite slew rate 'r'.
 - (b) Draw a non inverting amplifier circuit of OPAMP whose open loop voltage gain is finite and its value A d. Derive closed loop voltage gain of the circuit.

- 6. (a) Derive the maximum efficiency of a class B power amplifier when a square wave is given as input to the power amplifier.
 - (b) Explain the principle operation of a push pull power amplifier. Compare its performance with Complementary symmetry power amplifier. 5
- 7. (a) The voltage gain of a transistor amplifier is 50. Its input and resistances are 1 K Ω and 40 K Ω . If the amplifier is provided with 10% negative voltage feedback in series with the input, calculate the closed loop voltage gain, input resistance and output resistance.
 - (b) How the source resistance (RS) and load resistance (RL) affect the voltage gain of a amplifier. Explain with necessary mathematical expression.
- 8. Write short notes on any two:

5×2

- (a) Crystal oscillator
- (b) Differential amplifier
- (c) Non linear distortions in a
- (d) High frequency effects in a transistors.