							P	PEEL 5303 (New)			
Total number of printed pages – 3									B.	Tech	
Registration No.:											

Sixth Semester (Back) Examination – 2013 ELECTRIC DRIVES

BRANCH: EEE, ELECTRICAL

QUESTION CODE: B255

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What factors limit the maximum speeds of field consolled dc motor?
- (b) Which method of speed control for domotor gives faster response? Justify.
- (c) What is Constant Power DC drive?
- (d) What are various types of load torques 2 GUNP
- (e) Which method of speed control for dc motor gives faster response? Justify.
- (f) Why is it necessary to maintain constant terminal voltage for variable frequency variable voltage control of induction motor drive above base speed?
- (g) When operating in regenerative braking, the induction motor slip should not exceed the break down slip. Why?
- (h) What are the factors which affect the coefficient of adhesion?
- (i) What is the nature of torque speed characteristics suitable for traction drives?
- (j) What is the function of a damper winding in a synchronous motor?
- 2. (a) Explain the operation of a closed loop speed control scheme with inner current control loop. What are various functions of inner current control loop?

Load rising linearly from 200 to 500 kW: 4 minutes

Uniform load of 400 kW: 2 minutes

Regenerative power returned to the supply reducing linearly from 400 kW to 0:3 minutes

Remains idle: 4 minutes

Determine power rating of the motor assuming loss to be proportional to (power)².

- 3. (a) Calculate the starting time of a drive with following parameters: 10 kg-m^2 , $T = 15 + 0.5 \omega_m$ and $T_1 = 5 + 0.6 \omega_m$
 - (b) A 220V, 24A, 100 pm, separately excited dc motor has an armature resistance of 2Ω. Motobis controlled by a chopper with frequency of 500 Hz and source veltage of 230V. Calculate the duty ratio for 1.2 times rated torque and 500 rpm.
- (a) Explain with neat circuit diagram, the regenerative braking of separately excited dc motor using a dc-chopper.
 - (b) A 200V, 875 rpm,150A separately excited dc motor has an armature resistance of 0.06 Ω and armature circuit inductance of 2.85 mH. It is fed from a single phase fully controlled rectifier with an ac source voltage of 220V, 50 Hz. Calculate motor speed for α = 120° and torque T=1200 N-m. 5
- 5. (a) Why stator voltage control is suitable for speed control of induction motors in fan and pump drives?
 5
 - (b) A 440V, 50 Hz, 4 pole, 1370 rpm, Y-connected squirrel cage induction motor has the following parameters:

 $R_s = 2 \Omega$, $R_r' = 3 \Omega$, $X_s = 3.5 \Omega$, $X_r' = 3.5 \Omega$, $X_m = 55 \Omega$

It is controlled by a current source inverter at a constant flux. Calculate

- Motor torque, speed and stator current when operating at 30 Hz and rated slip speed
- Inverter frequency and stator current for rated motor torque and motor speed of 1200 rpm.

- (a) State the advantages and disadvantages of dc traction drive using PWM voltage source inverter fed induction motor drive.
 - (b) A 500 tonnes train travels a down gradient of 20 in 1000 for 50 sec during which period its speed is reduced from 150 kmph to 100 kmph by regenerative braking. The tractive resistance is 40 N/tonne, effect of rotational mass is 10% and efficiency of the drive in regenerative braking is 80%. Calculate the energy returned to the line.
- What is the advantage of microprocessor control over dedicated hardware control in Electrical Drives application? Explain with schematic block diagram the control of DC drive using microprocessor.
- 8. Write short notes on any two of the following:

5×2

- (a) Energy loss in transient operations
- (b) slip power recovery induction motor drive
- (c) 25 kV AC Traction using Corporter controlled dc motors
- (d) Drives for Sugar Mills