						PCEC 4304(New)			
Total number of printed pages – 3						_		B. Tech	
Registration No.:									

Sixth Semester (Back) Examination – 2013 DIGITAL SIGNAL PROCESSING

BRANCH: EEE, MECH

QUESTION CODE: B 247

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following :

2×10

- (a) Find the Niquist rate of sampling of the mixed signal given below: Sin (2000 ∏ t) + Cos (5000t)
- (b) State the time reversal property of the z transforms
- (c) Why FIR filters are inherently stable?
- (d) Express Unit step function U(n) in terms of in terms of impulse functions $\delta(n)$.
- (e) How many real multiplication and addition required for computation of N-point DFT?
- (f) Draw the basic structure of 1st order digital FIR filter.
- (g) Sketch the signal x(-n+4) When X(n) = (1, 1, 0, 1).
- (h) Give the mapping of S-plane to Z-plane using bilinear transformation technique.
- (i) Find the impulse response of the system which is described by the difference equation

Y(n) = 0.5x(n-1) + 2x(n)

(j) What is circular convolution?

- 2. (a) Determine the stability region of the casual system
 - $X(z) = \frac{1}{1 az^{-1} + bz^{-2}}$
 - (b) Determine the transient and steady state response of the system described by x(n) = y(n-1) + 2y(n-2)

When an unit step function is applied to the system.

- 3. (a) Determine eight point DFT of the following signal : $X(n) = \{1,1,1,1,1,0,0\}$
 - (b) Find inverse Z-transform of: $X(z) = \log \left(\frac{1}{2} + \frac{1}{2} \right) = |a|$
- 4. Determine the order and poles of a low pass Butterworth filter that has 3-dB bandwidth is 500 Hz and attenuation of 40 dB at 1000 Hz. Sketch the poles of proposed filter transfer functions.
- 5. (a) Consider the casual system y(n) = 0.9y(n-1) 0.08y(n-2) + x(n) + 0.3x(n-1) Obtain parallel structure of the system
 - (b) Explain the Design of linear phase FIR filter using frequency sampling method.
- 6 (a) Explain the design procedure for IIR filter using impulse invariance method.
 - (b) Design a single pole low pass digital filter with 3-dB bandwidth of 0.2 II, using bilinear transformation applied to the analog filter 5

$$H(s) = \frac{\Omega}{s + \Omega}$$

where Ω is the 3-dB bandwidth of an analog filter.

- 7 (a) Explain Decimation in time FFT algorithm. 5
 - (b) Find 4-pont IDFT of the signal, X(k) = {1,1,0,1} and sketch magnitude response.

4

6

4

- (a) Channel Equalization
- (b) Linear-Phase FIR Filters using windows
- (c) Circular convolution
- (d) Use of DF Winear filtering