Total number of printed pages – 3					B. Tech PCEC 4304(New)	
Registration No.:						

Sixth Semester (Back) Examination – 2013 DIGITAL SIGNAL PROCESSING

BRANCH: CSE, ELECTRICAL

QUESTION CODE: B248

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) A communication link carries binary coded words representing samples of an input
 - $x(t) = \sin(2000t) + 2\cos(1500 \pi t)$

The link is operated at 10,000 samples per second. Find sampling frequency and niquist sampling rate of the link.

- (b) Express impulse function δ (n). in terms of step to bettion U(n).
- (c) What do you mean by region of convergence (ROC)? What is importance in discrete time system?
- (d) What is time reversal property of DFT?.
- (e) How many real multiplication and real additions are required to compute 8 point DFT?
- (f) Why IIR filters does not have Linear phase characteristics?
- (g) What is discrete Hilbert transform? What is its physical significance?
- (h) How can you compute Fourier transform form Z-transform?

- (i) What are different bands in a digital filter? At which band an ideal filter is distortion less?
- (j) Why aliasing occurs most of the time when mapping of s-plane to z-plane is done using impulse invariance sampling method?
- 2. (a) Determine the response y(n), $n \ge 0$, of the system described by the following difference equation.

$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1).$$

When input sequence is

$$x(n) = a^n u(n)$$

- (b) State and prove scaling proberty of 2 transform.
- (a) Establish the relation between ω and Ω using bilinear transformation. And then, bring out a mapping between them.
 - (b) Convert the analog filter with the system function

$$H(s) \frac{s+0.1}{(s+0.1)^2+9}$$

Into a digital IIR filter using bilinear transformation method

 Determine the coefficient of linear phase FIR filter length M =15, which has a symmetricunit sample response and frequency response that satisfies the condition

$$Hr\left(\frac{2\pi k}{15}\right) = 1$$
 $K = 0,1,2,3$
= 0.4 $K = 4$
= 0 $K = 5,6.7$

5. (a) Consider the casual system

Y(n) = 0.1y(n-1) - 0.72y(n-2) + 0.7x(n) - 0.252x(n-1)

Obtain a cascade structure of the system

(b) Discus the merits and demerits of IIR and FIR digital filters.

5

5

4

5

- Establish the relation between DFT and Z-transform 6. (a)
 - Perform the circular convolution of the following two sequences: (b) 5

$$X^{1}(n) = \{2,1,2,1\}$$

$$X^{2}(n) = \{1,2,3,4\}$$
 5

- Explain Decimation in frequency FFT algorithm. 7. (a) 5
 - What is the physical significance of DFT? Find 4-pont IDFT of the signal, (b) $X(n) = \{1,0,2,1\}$.
- Write short notes on any two of the following: 5×2 8.
 - Use of FFT in linear filtering a)
 - Line Enhancer WIRAL LIBRAR b)
 - Overlap-add/method c)
 - Adaptive Noise Cancelling d)

5